(3.239.33.139) 您好!臺灣時間:2021/03/02 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘巧玲
研究生(外文):Ciao-Ling Pan
論文名稱:酸種類及濃度對酸-甲醇處理米澱粉理化性質之影響
論文名稱(外文):Effect of acid type and concentration on the physicochemical properties of acid-methanol treated starch
指導教授:張永和張永和引用關係
指導教授(外文):Yung-Ho Chang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:107
中文關鍵詞:硫酸鹽酸硝酸酸-甲醇米澱粉
外文關鍵詞:sulfuric acidnitric acidhydrochloric acidacid-methanolrice starch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討於甲醇中經鹽酸、硝酸及硫酸水解之米澱粉顆粒的性質差異。研究中取三種不同直鏈澱粉含量之米澱粉(台稉糯1號(TKW1)、台農67號(TNG67)及台中秈17號(TCS17)經含不同酸濃度(25-100 mN)及酸種類(HCl、HNO3及H2SO4)之甲醇中處理(45°C、1h)後,測定其澱粉顆粒粒徑及顆粒型態、溶解度、成糊黏度、糊化熱性質、分子量分布及鏈長分布等性質以探討不同酸濃度及種類對米澱粉理化性質之影響,並進一步測定醇液中酸之pH值以探討不同酸種類其解離程度對酸-甲醇米澱粉理化性質之影響。
結果顯示,三種米澱粉經不同酸濃度及酸種類處理後其回收率皆高達95%以上,且澱粉顆粒粒徑(TKW:4.26~5.06 μm;TNG67:4.84~5.62 μm;TCS17: 5.15~5.51 μm)均小於未處理者(TKW:5.76 μm;TNG67:5.75 μm;TCS17:5.71 μm),但不同酸濃度處理下其粒徑大小變化與酸濃度間無明顯的趨勢,且回收之澱粉其顆粒外觀並無明顯裂痕出現。米澱粉的溶解度經鹽酸、硝酸或硫酸-甲醇處理後皆隨著酸濃度增加而增加,且經-甲醇處理之TKW1米澱粉其溶解度(23-93%)皆高於TNG67(15-53%)及TCS17 (11-34%);而不同酸種類中又以鹽酸-甲醇處理組其溶解度上升最為明顯。
三種米澱粉經酸-甲醇處理後其成糊黏度及重量平均分子量皆隨處理酸濃度增加而下降,且酸-甲醇處理之TNG67及TCS17米澱粉的直鏈澱粉鏈長亦有相同趨勢,其中又以鹽酸-甲醇處理組下降最為明顯。除鹽酸-甲醇處理之TNG67及TCS17米澱粉外,酸-甲醇處理米澱粉之糊化溫度及糊化熱焓值皆與未處理者相近,而鹽酸-甲醇處理之TNG67及TCS17米澱粉其糊化尖峰溫度(TNG67:64.5~65.2℃;TCS17:64.3~64.4℃)則低於未處理者(TNG67:66.5℃;TCS17:65.0℃)。進一步分析醇液中酸液pH值,發現鹽酸的pH值於相同濃度下皆低於硝酸及硫酸,這結果顯示鹽酸在甲醇中其解離度較硝酸及硫酸強。因此,鹽酸在甲醇能解離較多的氫質子,進而造成澱粉的降解程度高於硝酸或硫酸處理組。
TNG67米澱粉經酸-甲醇處理後,其成糊黏度曲線由起始黏度生成至尖峰黏度由原本的平滑曲線上升轉變為兩段式上升。第一段黏度上升是指最初黏度生成至轉折點之黏度變化,第二段則是指轉折點至尖峰黏度間黏度變化,且以第一段黏度上升較快速。兩段黏度上升斜率經由鹽酸、硝酸或硫酸-甲醇處理後皆隨著酸濃度增加而下降,然以第二段斜率隨濃度增加而下降較明顯。於固定酸濃度經不同酸種類處理下其第二段斜率依序為HNO3> H2SO4 > HCl。進一步發現酸-甲醇之TNG67米澱粉的直鏈澱粉鏈長與成糊黏度的第二段斜率具有顯著相關性(r = 0.907, p<0.001),這表示澱粉經酸-甲醇處理造成直鏈澱粉降解而減少直鏈澱粉限制顆粒膨潤作用。
Effects of acid type and concentration on the physicochemical properties of acid-methanol treated rice starches were studied. Rice starches (TKW1, TNG67 and TCS17) were modified with different concentrations (25, 50, 75 and 100 mN) and types (HCl, HNO3 and H2SO4) of acids in methanol at 45°C for 1 h. The physicochemical properties including granule size, pasting properties, solubility, thermal properties, molecular characteristics and chain length distribution were examined.
The recovery yields of acid-methanol treated starches were all above 95%. Starch granules did not show significant change after modification and the average granule size of acid-methanol treated starches (TKW: 4.26~5.06 μm; TNG67: 4.84~5.62 μm; TCS17: 5.15~5.51μm) were smaller than their counterpart native starches (TKW: 5.76 μm; TNG67: 5.75μm; TCS17: 5.71μm). In spite of acid type, pasting viscosity and molecular weight of acid-methanol treated starches, and the average chain length of amyloses of TNG67 and TCS17 modified starches decreased with the increase of acid concentration, but the solubility of acid-methanol treated starches increased with the increase of acid concentration. The most obvious changes were found on HCl-methanol treated starches. The obvious changes of viscosity or solubility were found on TKW1 rice starch.
The gelatinization temperature and enthalpies of acid- methanol treated starches were similar to their counterpart native starches except for the HCl-methanol treated starches of TNG67 and TCS17. The Peak temperature (Tp) of HCl-methanol treated starches of TNG67 (64.5~65.2°C) and TCS17 (64.3~64.4°C) were lower than their counterpart native starches (TNG67: 66.5°C; TCS17: 65.0°C). HCl-methanol solution had lower pH value than those of HNO3 or H2SO4 –methanol solutions. This finding implies that HCl in methanol could dissociate more hydrogen ion, and results in the higher degradation occurred in HCl -methanol solution than in HNO3 or H2SO4-methanol solutions.
TNG67 rice starches treated in methanol with different concentrations or types of acid showed stepwise increasing patterns in viscosity. The viscosity profile of native starch showed a smoothly increasing pattern from the initial pasting temperature to the peak temperature, while those of acid-methanol treated starches depicted two-step increasing profiles. The first step increased from the initial pasting temperature to the critical temperature, and the second step from the critical temperature to the peak temperature. Therefore, two slopes could be obtained from the increasing viscosity profiles of methanol-treated starches. The slopes of the first steps (S1) were similar for the starches treated with different acids in methanol, however the slopes of the second step (S2) increased in the order of HCl, H2SO4 and HNO3. The peak viscosity of the methanol-treated starch also decreased in the same order. It was found that the chain length of amylose of treated starch positively correlated with S2 (r=0.907, p&lt;0.001) and peak viscosity (r=0.918, p&lt;0.001) in spite of the type or concentration of acid used. This finding implies that the degradation of amylose reduces the restriction effect of amylose on swelling of starch granules.
目錄
頁次
中文摘要 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥
英文摘要 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥
目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ I
圖目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ III
表目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ V
前言 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ VI
文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1
一、澱粉理化性質‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1
(一) 結晶結構‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1
(二) 支鏈澱粉微細結構‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2
(三) 直鏈澱粉微細結構‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2
(四) 顆粒大小及外觀‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3
(五) 成糊特性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5
(六) 膨潤力及溶解度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5
(七) 糊化熱性質 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6
二、澱粉酸水解‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6
(一) 酸水解機制‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7
(二) 影響酸水解的因素 ‥‥‥‥‥‥‥‥‥‥‥‥‥ 8
1.酸種類‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8
2.酸濃度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9
3.澱粉種類‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 9
4.處理時間‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10
三、澱粉酸醇處理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11
(一) 處理酸濃度 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 11
(二) 醇溶液種類及濃度 ‥‥‥‥‥‥‥‥‥‥‥‥‥ 11
1.單一醇‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 12
2.混合醇‥‥‥‥‥‥ ‥‥‥‥‥‥‥‥‥‥‥‥ 12
3.醇濃度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13
(三) 澱粉種類及濃度 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13
1.澱粉種類‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13
2.澱粉濃度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13
(四) 處理溫度及時間‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13
1.處理溫度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 14
2處理時間‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 14
四、酸‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 15
五、稻米分類‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 20
材料與方法 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21
一、實驗材料‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21
二、澱粉分離及純化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21
三、酸醇處理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21
四、澱粉理化性質之測定‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21
(一) 一般成分分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 22
(二) 顆粒結構‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 22
(三) 顆粒粒徑分布‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 23
(四) 溶解度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 23
(五) 成糊特性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 23
(六) 糊化熱性質‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 23
(七) 直鏈澱粉含量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 24
(八) 分子量分布‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 24
(九) 鏈長分布‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 25
(十) 溶液pH值‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 26
結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 27
一、一般成分分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 27
二、回收率及顆粒大小‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 27
三、澱粉顆粒型態‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 27
四、膨潤力溶解度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 31
五、成糊特性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 38
六、糊化熱性質‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 49
七、分子量分布‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 50
八、鏈長分布‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 61
九、含酸醇之pH值‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 69
十、酸-甲醇處理TNG67米澱粉的成糊特性與直鏈澱粉鏈長
之相關性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 68
十一、酸-甲醇米澱粉的分子量與溶解度之相關性‥‥‥‥ 71
十二、酸-甲醇米澱粉的分子量與成糊尖峰黏度之相關性‥ 73
十三、處理醇液中氫離子濃度對酸-甲醇米澱粉分子量之影響 75
結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 79
參考文獻 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 81
答客問 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 88
楊啟春、賴惠民、呂政義。1984。米澱粉分離法之改進。食品科1(3/4):158-162。
經濟部中央標準局。 1994。 稻米辭彙。 中國國家標準CNS標準總號:13446 類號:N1126。
AACC. 2000. Approved Methods of the American Association of Cereal Chemists, 10th ed. Minnesota: American Association of Cereal Chemists.
Asaoka M, Okuno K, Fuwa H. 1985. Effect of environmental temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.). Agric Biol Chem 49(2):373-9.
Atichokudomchai N, Shobsngob S, Chinachoti P, Varavinit S. 2001. A study of some physicochemical properties of high-crystalline tapioca starch. Starch 53(11):577-81.
Atichokudomchai N, Shobsngob S, Varavinit S. 2000. Morphological properties of acid-modified tapioca starch. Starch 52(8-9):283-289.
Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF. 1988. The terminology and methodology associated with basic starch phenomena. Cereal Food World 33(3):306-11.
Biliaderis CG, Grant DR, Vose JR. 1981. Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem 58(6):502-7.
BeMiller JN. 1964. Iodimetric Determination of Amylose. In Whistler RL, Smith RJ, BeMiller JN, Wolfrom ML.(Eds), Methods in Carbohydrate Chemistry. New York : Academic Press. P165-168.
Boraei AAA. 2001. Acidity Constants of Some Tetrazole Compounds in Various Aqueous-Organic Solvent Media. J Chem Eng Data 46(4):939-43.
Bos M, van der Linden WE. 1996. A knowledge based advisory system for acid/base titrations in non-aqueous solvents. Anal Chim Acta 332(2/3):201-211.
Chang SM, Liu LC. 1984. Lvestigations on the gelatinization of rice starches with various amylose contents by differential scanning calorimetry. Bull Inst Chem Academia Sinica 35:97.
Chang YH, Lin JH, Lii CY. 2004. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydr Polym 57(1):89-96.
Chang YH, Lin JH, Chang SY. 2006. Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocolloids 20(2-3):332-339.
Chun J, Lim A, Takeda Y, Shoki M. 1997. Properties of high-crystalline rice amylodextrins prepared in acid-alcohol media as fat replacers. Cereal Food World 42(10):813-819.
Dickerson RE, Gary HB, Haigth JrGP. 1979. Solution Equilibria : Acids and Bases. In Chemical Principles. 3th ed. Calfornia: Benjamin/Cummins. P172-224.
Douhéret G. 1967. The dissociation of organic compounds in aqueous organic media. I. Determination of the lipid junction potential and the effect of the medium on the hydrogen ion in these system and the study of the dissociation of some acid-base copules. Bull Soc Chim 5(4):1412-9.
Fannon JF, Hauber RJ, BeMiller JN. 1992. Surface pores of starch granules. Cereal Chem 69(3):284-288.
Fischer RB and Peters DG. 1970. Equilibrium in acid-base reactions. In Chemical equilibrium. Philadelphia: W.B. Saunders Company, P160-161.
Fox JD, Robyt JF. 1992. Modification of starch granules by hydrolysis with hydrochloric acid in various alcohols, and formation of new kinds of limit dextrins. Carbohydr Polym 227(2):163-70.
French D. 1984. Organization of starch granules, In Whistler RL, BeMiller JN, Paschall EF (Eds), Starch: Chemistry and Technology. Orlando : Academic Press. P232.
Fuwa H, Nakajima M, Hamada A,Glover DA. 1977. Comparative susceptibility to amylases of starches from different plant species and several single endosperm mutants and their double-mutant combinations with opaque-2 inbred Oh 43 maize. Cereal Chem 54(2): 230–237.
Gallant DJ, Derrien A, Aumaitre A, Guilbot A. 1973. In vitro degradation of starch. Studies by transmission and scanning electron microscopy. Starch 25(1):56-64.
Han XZ, Hamaker BR. 2001. Amylopectin fine structure and rice starch pasta breakdown. J Cereal Sci 34(3):279-284
Hizukuri S, Takeda Y, Yasuda M, Suzuki A. 1981. Muti-branched nature of amylose and action of debranching enzymes. Carbohydro Res 94(2):205-213.
Hizukuri S. 1996. Starch :analytical aspects. In Eliasson AC, Mercel D.(Eds), Carbohydrate in Food. New York: Basel. P347-429.
Hoover R, Vasanthan T. 1994. The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. J Food Biochem 17(5):303-25.
Hoover R. 2000. Acid -treated starches. Food Rev Int 16(3):369-392.
Inouchi N, Glover DV, Fuwa H. 1987. Properties of residual maize starches following acid hydrolysis. Starch (39):284-8.
Jacobs H, Eerlingen RC, Delcour JA. 1996. Factors affecting the visco-amylograph and rapid- analyzer evaluation of the impact of annealing on starch pasting properties. Starch(7/8):266-70.
Jane J, Chen JF. 1992. Effect of amylose molecular size and amylopectin branch chain length on pasta properties of starch. Cereal Chem 69(1):60-5.

Jane J, Chen YY, Lee LF, Wong KS, Radosavlijevic M, Kasemsuwan T. 1999. Effect of amylopectin branch chain length and amylose content on gelatinization and pasting properties of starch. Cereal Chem 76(5):629-37.
Jayakody L, Hoover R. 2002. The effect of lintnerization on cereal starch granule. Food Res International 35(7):665-80.
Kainuma K, French D. 1971. Nageli amylodextrin and its relationship to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolym 10(9):1673-80.
Krog N. 1973. Influence of food emulsifier on pasting temperature ad viscosity of various starches. Starch 25(1):22-7.
Langton M, Hermansson AM. 1989. Microstructural changes in wheat starch dispersions during heating and cooling. Food Microstruct 8(1):29-39.
Lii CY, Chang SM, Yang HL. 1986. Correlation between the physicochemical properties and the eating quality of milled rice in Taiwan. Bull Inst Chem Academia Sinica 33(1):55-62.
Lin JH, Lee SY, Chang YH. 2003. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydr Polym 55(4):475-82.
Lin JH, Lii CY, Chang YH. 2005. Change of granular and molecular structures of waxy maize and potato starches after treated in alcohols with or without hydrochloric acid. Carbohydr Polym 59(4):507-15.
Lintner, CJ. 1886. Studien uber diastase. J Prakt Chem 34(3): 378–86.
Ma PO, Robyt JF. 1987. Preparation and characterization of soluble starches having different molecular sizes and composition, by acid hydrolysis in different alcohols. Carbohydr Res 166(2):283-97.
Medcalf DG, Gilles KA.. 1965. Wheat starches. I. Comparison of physicochemical properties. Cereal Chem 45(6):558-68.
Melvin M. 1979. The effect of extractable lipid on the viscosity characteristics of corn and wheat starches. J Sci Food Agric 30(2):731-8.
Morrison WR, Tester RF, Gidley MJ, Karkalas J. 1993. Resistance to acid hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerised waxy and non-waxy barley starches. Carbohydr Res 245(2):289-302.
Nageli CW. 1874. Beitage zur naheren kenntniss der starke grupe. Annalen der chemie 173(2):218-27.
Oda M, Yasuda Y, Ozaki S, Yamauchi Y, Yokoyama Y. 1980. A method of flour quality assessment for Japanese noodles. Cereal Chem 57(2):253-4.
Radhika RK, Zakiuddin AS, Bhattacharya KR. 1993. The fine structure of rice starch amylopectin and its relation to the texture of cooked rice. Carbohydr Polym 22(4):267-75.
Rived F, Roses M, Bosch E. 1998. Dissociation constants of neutral and charged acids methyl alcohol. The acid strength resolution. Anal Chim Acta 374(2-3):309-24.
Robin JP, Mercier C, Duprat F, Charbonnier R, Guilbot R. 1975. Lintnerized starches. Chromatographic and enzymatic studies of insoluble residues from acid hydrolysis of various cereal starches, particularly waxy maize starch. Starch 27(1):36-45.
Robyt JF, Choe JY, Fox JD, Hahn RS, Fuchs EB. 1996. Acid modification of starch granules in alcohols: reactions in mixtures of two alcohols combined in different ratios. Carbohydr Polym 283(1):141-50.
Robyt JF, Choe JY, Hahn RS, Fuchs EB. 1996. Acid modification of starch granules in alcohols: effect of temperature, and acid concentration, and starch concentration. Carbohydr Res 281(2):203-18.
Sasaki T, Matsuki J. 1998. Effect of wheat starch structure on swelling power. Cereal Chem 75(6): 525–9.
Schoch TJ, Maywald EC. 1968. Preparation and properties of various legume starches. Cereal Chem 45(6):564-73.
Shibanuma K, Takeda Y, Hizukuri S, Shibata S. 1994. Molecular structures of some wheat starches. Carbohydr .Polym 25(2):111-6.
Singh V, Ali SZ. 2000. Acid degradation of starch. The effect of acid and starch type. Carbohydr Polym(2):191-5.
Small JC. 1919. A method for the preparation of soluble starch. J American Chem Soc 41(1):113-20.
Takahashi S, Seib PA. 1988. Pasta and gel properties of prime corn and wheat starches with and without native lipids. Cereal Chem(5):474-83.
Tester RF, Karkalas J. 1996. Swelling and gelatinization of oat starches. Cereal Chem 73(2):271-7.
Tester RT, Morrison WR. 1990. Swelling and gelatinization of cereal starches. I. Effect of amylopectin , amylose, and lipids. Cereal Chem 67(6):551-7.
Thirathumthauorn D, Charoenrein S. 2005. Thermal and pasting properties of acid-treated rice starches. Starch 57(5):217-22.
Vander Wefr CA. 1961. The Bronsted –Lowry Concept of Acids and Bases. In Acids, Bases, and the Chemistry of the Covalent Bond. New York : Reinhold. P23-26.
Vasanthan T, Hoover R. 1992. Effect of defatting on starch structure and physicochemical properties. Food Chem 45(5):337-47.

Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. 2003. Rice starches: I. Structural aspects provide insight into swelling and pasting properties. J Cereal Sci 38(1):53-9.
Wang LF, Wang YJ. 2001. Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch 53(11):570-6.
Wang YJ and Wang LF. 2002. Structures of four waxy rice starches in relation to thermal, pasting, and textural poperties. CerealChem 79(2):252-6.
Wang YJ, Troung VD, Wang L. 2003. Structures and rheological properties of corn srarch as affected by acid hydrolysis. Carbohydr Polym 52(2):327-33.
Yuan RC, Thompson DB, Boyer CD. 1993. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotype in two inbred lines. Cereal Chem 70(1):81-9.
Zobel HF. 1988. Starch crystal transformation and their industial importance. Starch 40(1):1-7.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔