跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴雅琪
研究生(外文):Ya-Chi Lai
論文名稱:兒茶素對老化促進小鼠學習記憶能力、體內抗氧化狀態、血糖及胰島素之影響
論文名稱(外文):Effect of catechins on learning memory ability, antioxidative status, blood glucose and insulin in senescence accelerated mice
指導教授:王銘富王銘富引用關係
指導教授(外文):Ming-Fu Wang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:170
中文關鍵詞:學習記憶兒茶素抗氧化血糖胰島素β-類澱粉蛋白老化促進小鼠
外文關鍵詞:catechinslearning memoryantioxidationsenescence accelerated mice (SAMP8)blood glucoseinsulin?-amyloid
相關次數:
  • 被引用被引用:2
  • 點閱點閱:585
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
研究指出,兒茶素(catechins)具有抗氧化、降血糖之功能。本研究目的在探討兒茶素對老化促進小鼠學習記憶、體內抗氧化狀態、血糖及胰島素之影響。實驗以3月齡與6月齡雄性及雌性老化促進小鼠(senescence accelerated mice,SAMP8)為對象,分為對照組、實驗組(50, 200, 800 ppm兒茶素水溶液) ,為期12週。實驗期間記錄小鼠攝食量、攝水量、體重變化及老化指數評估。行為方面進行活動量試驗,並以單次被動迴避試驗及主動迴避試驗進行學習記憶能力測試。動物犧牲前,進行口服葡萄糖耐受性試驗(OGTT)。犧牲後進行血液生化分析,檢測超氧歧化、觸、麩胱過氧化、麩胱還原、葡萄糖-6-磷酸去氫活性及TBARS、蛋白羰基、總含硫化合物含量。另進行胰臟之胰島素定量,並以組織切片觀察腦部、胰臟β-類澱粉蛋白沉積之情形。結果顯示:實驗各組攝食量、攝水量、體重變化及活動量於四組間均無顯著差異。在老化指數評估方面,3與6月齡雄性及雌性兒茶素組之老化指數總分顯著低於對照組(p<0.05)。於學習記憶方面,經主動迴避試驗結果發現3及6月齡雄、雌性小鼠實驗組均有較佳的學習記憶能力;另3及6月齡雄、雌性小鼠經單次被動迴避試驗發現實驗組在學習記憶保留上顯著較佳,且達顯著差異(p<0.05)。而3及6月齡雄、雌性小鼠經OGTT結果發現,實驗組於第0、30、60、90、120分鐘之血糖值皆顯著低於對照組(p<0.05);在血漿胰島素濃度方面,實驗組於第0、30、60、90、120分鐘之血漿胰島素濃度亦顯著低於對照組 (p<0.05)。在超氧歧化活性部份,三與六月齡雄、雌性小鼠實驗各組間均無顯著差異;而在觸、麩胱過氧化、麩胱還原、葡萄糖-6-磷酸去氫活性及總含硫化合物濃度方面,3與6月齡雄、雌性小鼠之兒茶素組均顯著高於對照組(p<0.05);兒茶素組之TBARS及蛋白羰基含量則顯著低於對照組(p<0.05)。於腦部、胰臟β-類澱粉蛋白總沉積量及胰島素定量方面,3與6月齡雄、雌性小鼠各組間無顯著差異。綜合以上結果,補充兒茶素可改善老化促進小鼠之學習記憶能力、提升其抗氧化防禦系統並加強其胰島素敏感性。
Catechins were demonstrated to have antioxidant and redusing blood glucose capacity. The purpose of this study was to investigate the effect of catechins on learning and memory ability, antioxidative status, blood glucose and insulin content in senescence accelerated mice. 3- and 6-month-old senescence accelerated male and female mice were divided into four groups: control group, 50, 200 and 800 ppm aqueous solutions of catechins(experimental groups). After 12 weeks of feeding, body weight, food intake, drink amount, aging score, open field activity test, single-trial passive avoidance and active shuttle avoidance test were performed during the experiment. The oral glucose tolerance test (OGTT) was analyzed before sacrificed. The biochemical parameters of serum were analyzed after sacrificed. The activity of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase, glucose-6-phosphate dehydrogenase (G-6-PD), malondialdehyde (MDA) , protein carbonyl and total thiol concentrations and insulin content, pathological examination of brain and pancreas. The results showed that there were no significant differences in the body weight, food intake, drink amount and locomotion among four groups. The aging score of experimental groups were significantly lower than the control group in the 3-and 6-month-old mice (p&lt;0.05). In learning and memory test, experimental groups of 3-and 6-month-old senescence accelerated male and female mice had significantly better in active shuttle avoidance response and single-trial passive avoidance test (p<0.05). The results of OGTT, experimental groups of 3-and 6-month-old senescence accelerated male and female mice had significantly lower than the control group on blood glucose at 0, 30, 60, 90, 120 minutes (p&lt;0.05). In concentration of plasma insulin, experimental groups had significantly lower than the control group in before and 30, 60, 90, 120 minutes (p&lt;0.05). The SOD activity was no significantly different in both 3-and 6-month old male and female mice. The catalase, GPx, glutathione reductase, G-6-PD activity and total thiol concentration, experimental groups of 3-and 6-month-old senescence accelerated male and female mice had significantly higher than the control group (p<0.05). The MDA and protein carbonyl concentrations in the experimental groups were significantly lower than the control group. The β-amyloid protein deposition of brain, pancreas and insulin content were no significantly different in the 3-and 6-month male and female mice. From the findings of these results, the supplement of catechins may ameliorate learning and memory ability, antioxidative system and increase insulin sensitivity in SAMP8 mice.
目 錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
表目錄 Ⅷ
圖目錄 X

第一章 前言 1

第二章 文獻回顧 5
第一節自由基與活性氧的定義與種類 5
一、自由基與活性氧的定義 5
二、自由基的來源 6
三、自由基與人類疾病之關係 7
四、體內抗氧化防禦系統 10
第二節 老化 11
一、老化之定義 13
二、老化與自由基之相關性 13
三、老化與抗氧化防禦系統 14
四、老化與阿滋海默症

第三節 胰島素 18
一、胰島素於三大營養素中所扮演的角色 18
二、影響胰島素分泌的因子 19

第四節 老化促進小鼠 23
一、老化促進小鼠來源 23
二、老化促進小鼠之老化特徵及抗氧化狀態 23
三、老化促進小鼠之病理特徵 24
四、老化促進小鼠與學習記憶 25
五、老化指數系統

第五節 學習與記憶 30
一、學習記憶的形成 30
二、記憶形成的機制 31
三、學習記憶的實驗方法 32
第六節 兒茶素 35
一、茶之簡介 35
二、茶葉的化學組成 36
三、茶葉的機能性 41
四、兒茶素類的負面影響 51
五、兒茶素類的吸收及分佈 53
第三章 材料與方法 54
第一節 實驗動物 54
第二節 實驗設計 55
第三節 實驗飲水配製 57

第四節 實驗方法與步驟 58
壹、實驗流程 58
貳、活動量測試 60
參、老化指數 60
肆、學習記憶測試 61
伍、葡萄糖耐受性試驗 65
陸、血液生化學分析 65
柒、肝臟抗氧化能力分析 65
捌、血液抗氧化能力分析 77
玖、腦部及胰臟病理切片觀察 79
拾、胰臟胰島素定量 91
第五節 統計分析 93

第四章 結果與討論 94
第一節 體重、攝食量及攝水量 94
第二節 老化指數 97
第三節 活動量 102
第四節 學習與記憶能力 105
第五節 口服葡萄糖耐受性試驗 111
第六節 器官重量 116
第七節 血液生化學分析 116
第八節 肝臟抗氧化能力 122
第九節 血液抗氧化能力 140
第十節 腦部β類澱粉蛋白之沈積 143
第十一節 胰臟β類澱粉蛋白之沈積 150
第十二節 胰臟胰島素定量 154

第五章 結論 157

第六章 參考文獻 159
表目錄
頁次
表一 自由基參與的各種疾病 9
表二 老化指數判定標準 27
表三 SAM之病理生物學表型 29
表四 茶中的多酚類化合物
表五 茶葉成份的機能性分類 47
表六 茶葉中機能性成份的生理效應 48
表七 福壽公司實驗動物飼料組成 56
表八 3月及6月齡雄性SAMP8小鼠餵食
不同濃度兒茶素12週體重及攝食量之變化 95
表九 3月及6月齡雌性SAMP8小鼠餵食
不同濃度兒茶素12週體重及攝食量之變化 96
表十 3月齡雄性SAMP8系小鼠補充兒茶素11週後之
老化指數 98
表十一 3月齡雌性SAMP8系小鼠補充兒茶素11週後之
老化指數 99
表十二 6月齡雄性SAMP8系小鼠補充兒茶素11週後之
老化指數 100
表十三 6月齡雌性SAMP8系小鼠補充兒茶素11週後之
老化指數 101
表十四 3月齡SAMP8系小鼠飲用不同濃度兒茶素11週後
之活動量 103
表十五 6月齡SAMP8系小鼠飲用不同濃度兒茶素11週後
之活動量 104
表十六 三月齡SAMP8系小鼠飲用不同濃度兒茶素12週後
經口服葡萄糖耐受性試驗之結果 112
表十七 六月齡SAMP8系小鼠飲用不同濃度兒茶素12週後
經口服葡萄糖耐受性試驗之結果 114
表十八 3及6月齡雄性SAMP8系小鼠飲用不同濃度兒茶素
12週後之器官重 118
表十九 3及6月齡雌性SAMP8系小鼠飲用不同濃度兒茶素
12週後之器官重 119

表二十 3及6月齡雄性SAMP8系小鼠飲用不同濃度兒茶素
12週後對其血液生化值之影響 120
表二十一 3及6月齡雌性SAMP8系小鼠飲用不同濃度兒茶素
12週後對其血液生化值之影響 121




圖目錄
頁次
圖一 阿滋海默病腦部β-類澱粉蛋白導致氧化壓力及
神經毒性之作用機制 17
圖二 葡萄糖刺激胰島素釋放之機制圖 20
圖三 兒茶素類結構 40
圖四 兒茶素的抗氧化化學結構特性 49
圖五 兒茶素類的抗氧化反應機制 50
圖六 實驗流程圖 59
圖七 活動量裝置圖 63
圖八 主動迴避試驗裝置圖 64
圖九 被動迴避試驗裝置圖 64
圖十 病理組織切片流程圖 87
圖十一 腦部結構圖 88
圖十二 SAMP8小鼠全腦切片圖呈現深褐色β-類澱粉
蛋白沉積 89
圖十三 SAMP8小鼠胰臟切片圖呈現深褐色β-類澱粉蛋白
沉積 90
圖十四 3月齡SAMP8系小鼠飲用不同濃度兒茶素12週後
經主動迴避試驗之逃脫反應次數 106
圖十五 6月齡SAMP8系小鼠飲用不同濃度兒茶素12週後
經主動迴避試驗之逃脫反應次數 107
圖十六 3月齡SAMP8系小鼠飲用不同濃度兒茶素12週後
經單次被動迴避試驗之滯留時間 109
圖十七 6月齡SAMP8系小鼠飲用不同濃度兒茶素12週後經
單次被動迴避試驗之滯留時間 110
圖十八 3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟超氧歧化活性 126
圖十九 3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟超氧歧化活性 127
圖二十 3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟觸活性 128
圖二十一 3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟觸活性 129

圖二十二 3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟麩胱過氧化活性 130
圖二十三 3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟麩胱過氧化活性 131
圖二十四 3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟麩胱還原活性 132
圖二十五 3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟麩胱還原活性 133
圖二十六 3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟丙二醛濃度 134
圖二十七 3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟丙二醛濃度 135
圖二十八 3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟蛋白質羰基濃度 136
圖二十九 3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟蛋白質羰基濃度 137
圖三十 比較3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟總含硫化合物之濃度 138
圖三十一 比較3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之肝臟總含硫化合物之濃度 139
圖三十二 比較3月及6月齡雄性SAMP8系小鼠飲用不同濃度
兒茶素12週後之血液葡萄糖-6-磷酸去氫之活性 141
圖三十三 比較3月及6月齡雌性SAMP8系小鼠飲用不同濃度
兒茶素12週後之血液葡萄糖-6-磷酸去氫之活性 142
圖三十四 比較不同濃度之兒茶素對3月齡雄性SAMP8小鼠
腦中β-類澱粉蛋白沉積平均面積百分比 145
圖三十五 比較不同濃度之兒茶素對3月齡雌性SAMP8小鼠
腦中β-類澱粉蛋白沉積平均面積百分比 146
圖三十六 比較不同濃度之兒茶素對6月齡雄性SAMP8小鼠
腦中β-類澱粉蛋白沉積平均面積百分比 147
圖三十七 比較不同濃度之兒茶素對6月齡雌性SAMP8小鼠
腦中β-類澱粉蛋白沉積平均面積百分比 148

圖三十八 SAMP8小鼠腦中β-類澱粉蛋白沉積呈陽性反應 149
圖三十九 SAMP8小鼠腦中β-類澱粉蛋白沉積呈陰性反應 149
圖四十 比較不同濃度之兒茶素對3月及6月齡雄性SAMP8
小鼠胰臟β-類澱粉蛋白沉積平均面積百分比 151
圖四十一 比較不同濃度之兒茶素對3月及6月齡雌性SAMP8
小鼠胰臟β-類澱粉蛋白沉積平均面積百分比 152
圖四十二 SAMP8小鼠胰臟β-類澱粉蛋白沉積呈陽性反應 153
圖四十三 SAMP8小鼠胰臟β-類澱粉蛋白沉積呈陰性反應 153
圖四十四 比較不同濃度之兒茶素對3月及6月齡雄性SAMP8
小鼠胰臟胰島素含量 155
圖四十五 比較不同濃度之兒茶素對3月及6月齡雌性SAMP8
小鼠胰臟胰島素含量 156
郭智宏:自然界抗氧化高手之一~兒茶素~兒茶素在生理抗氧化上之作用。食品工業31(9):27-33(1999)
廖慶樑:茶葉中兒茶素的用途與萃取製程。食品資訊174:22-25(2000)
陳清泉:兒茶素之抗癌及抗腫瘤效應。食品工業31(9):1-15(1999)
陳惠英和顏國欽:自由基抗氧化防禦與人體健康。中華民國營養學會雜誌23:105-121(1998)
劉伯康:數種傳統食用植物抗氧化性之研究。國立中興大學食品科學研究所碩士論文(1997)
丁克祥: SOD生物醫學淺論。藝軒出版社。pp.204-228。
李世代:老年醫學的發展與貢獻-從老化研究談起。醫學繼續教育5(3):287-293(1995)
謝瀛華:老年健康維護:「老化理論」與「抗老研究」。社區發展季刊74:57-61(1996)
林進丁:胰島素。藥學雜誌2(4): 57-63。(1986)
鄭澄意。老化伴生脂質代謝異常之研究。國防醫學院醫學科學研究所博士論文。(1992)
竹田俊男: SAM。醫學 188(1):68-74 (1999)
邵郊:生理心理學。五南圖書出版有限公司pp.435-445(1993)
張磊、張均田:學習、記憶的實驗方法和記憶屏障模型。藥學通報 23(8): 475-477. (1988)
陳清泉:茶紅質與茶黃質之探討。食品工業29(12):7-16(1997)
甘子能:茶中的多元酚成份(之二)製茶過程中的多元酚類的傳統。食品工業13(7):10(1981)
周君蘭:茶中極品-寶珍綠茶-讓您喝出健康與美麗。食品資訊145:54-55(1998)
施明智:食物學原理(第2版)。藝軒圖書出版社(1998)
徐英祥:綠茶與健康-利用於機能性食品之可能性。茶訊2:26(1996)
尤新輝:簡介茶多元酚成份之機能性及其應用。食品工業29(3):10-18 (1997)
錢明賽:植物中之多酚化合物-單寧。食品工業31(6):44-52(1999)
梁雅芳:核與核酸混合物對小白鼠學習記憶能力之影響。靜宜大學食品營養學系碩士論文(1998)
吳亮宜:茶對血糖及胰島素敏感性之影響。臺灣大學食品科技研究所博士論文(2003)
夏彩藍和黃青真:茶對消化酵素活性之抑制作用。中國農業化學會誌。27(3): 406 (1989)
丁仁鳳和何普明:茶葉與糖尿病關係的研究概況。茶葉。30(4): 207-209 (2004)
Adams, D. O. & Hamilton, T. A. (1992) Macrophages as destructive cells in host defense. In: Gallin, J. I., Goldstein, I. M., Synderman, R., eds. Inflammation: basic principles and clinical correlates. New York: Raven. pp. 637-662.
Akiyama, H., Kameyama, M., Akiguchi, I., Sugiyama, H., Kawamata, T., Fukuyama, H., Kimura, H., Matsushita, M. & Takeda, T. (1986) Periodic acid-Schiff (PAS)-positive, granular structures increase in the brain of senescence accelerated mouse (SAM). Acta Neuropathol. Berl. 72: 124-129.
Allweis, C. (1991) The congruity of rat and chick multiphasic memory-consolidation modles. Neural and Behavioural Plasticity, Oxford University press. 370-393.
Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science. 217: 408-417.
Brand M. D., Buckingham J. A., Esteves T. C., Green K., Lambert A. J., Miwa S., Murphy M. P., Pakay J. L., Talbot D. A. and Echtay K. S. (2004). Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem. Soc. Symp. 71: 203-213.
Boveris, A. & Cadenas, E. (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquionoe. IUBMB Life 50: 245-250.
Buring J. E. & Hennekens C. H. (1997)  Antioxidant vitamins and cardiovascular disease. Nutr. Rev. 55: 53-60.
Bonorden W. R. & Pariza M. W. (1994) Antioxidant nutrients and protection from free radicals. Nutritional Toxicology. New York: Raven. 19-48.
Behl, C., Davis, J. B., Lesley, R. & Schubert, D. (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell. 77: 817-27.
Balazs, L. & Leon, M. (1994) Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem. Res. 19: 1131-1137.
Butterfield, D. A. & Lauderback, C. M. (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free radic. Biol. Med. 32(11): 1050-1060.
Bors, W. & Michel, C. (1999) Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies. Free Radic. Biol. Med. 27(11/12): pp. 1413-1426.
Balentine, D. A., Wiseman, S. & Bouwen, L. C. M. (1997) The chemistry of tea flavonoid. Criti. Rev. Food Sci. Nutr. 37(8): 693-704.
Butterfield, D. A., Howard, B. J., Yatin, S., Allen, K. L. & Carney, J. M. (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-alpha-phenylnitrone. Proc. Natl. Acad. Sci. U. S. A. 94: 674-678.
Cadenas, E. (1989) Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110.
Crespy V. and Williamson G. (2004). A review of the health effect of
green tea catechins in vivo animal models. J. Nutr. 134: 3431-3440.
Chance, B., Sies, H. & Boveris, A. (1979) Hydroperoxide metabolism in mammalian organ physiological. Review. 59: 527-605.
Cesbron, J. Y., Capron, A., Vargaftig, B. B., Lagarde, M., Pincemail, J., Braquet, P., Toelman, H. & Joseph, M. (1987) Platelets mediate the action of diethylcarbamazine on microfilariae. Nature 325: 533-536.
Chen LH (1989) Interaction of vitamin E and ascorbic acid. In Vivo 3: 199-209.
Christian, B. (1999) Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog. Neurobiol. 57: 301-323.
Curry, D. L., L. L. Bennet, & G. M. Grodsky. (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology. 83: 572-584.
Collingridge, G. L. & Singer, W. (1990) Excitatory amino acid receptors and synaptic plasticity. Pharmacol Sci. 11: 290-296.
Cao, G., Sofic, E. & Prior, R. (1996) Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44: 3426-3431.
Chen, Z. P., Schell, J. B., Ho, C. T. & Chen, K. Y. (1998) Green tea epigallocatechin gallte shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Let. 129: 173-179.
Chung, K., Wei, C. & Johnson, M. (1998) Are tannins a double-edged sword in biology and health? Trends Food Sci. Tech. 9: 168-175.
Chan, P. T., Gong, W. P., Cheung, Y. L., Huang, Y., Ho, O. K. & Chen, Z. Y. (1999) Jasmine green tea epicatechins are hyppolipidemic in hamsters fed a high fat diet. J. Nutr. 129(6): 1094-1101.
Cai, Y. J., Ma, L. P., Hou, L. F., Zhou, B., Yang, L. & Liu, Z. L. (2002) Antioxidant effects of green tea polyphenols on free radical initiated peroxidation of rat liver microsomes. Chem. Phys. Lipids 120: 109-117.
DeKosky, S. T., Scheff, S. W. & Markesbery, W. S. (1985) Laminar organization of cholinergic circuits in human frontal cortex in Alzheimer’s disease and aging. Neurology. 35: 1425-1430.
Devasagayam T. P., Tilak J. C., Boloor K. K., Sane K. S., Ghaskadbi S.
S. and Lele R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52: 794-804.
Dreosti, I. E., Wargovich, M. J. & Yang, C. S. (1997) Inhibition of carcinogenesis by tea: The evidence from experimental studies.Crit. Rev. Food Sci. Nutr. 37(8): 761-770.
Elaine, R. & Peskind, M. D. (1996) Neurobiology of Alzheimer’s disease. J. Clin. Psychiatry. 57: 5-8.
Emre, M., Geula, C., Ransil, B. J. & Mesulam, M. M. (1992) The acute neurotoxicity and effects upon cholinergic axons of intracerebrally injected β-amyloid in the rat brain. Neurobiology of Aging 13: 553-559.
Finazzi-Agro, A., Menichelli, A., Persiani, M., Biancini, G. & Delprincipe, D. (1982) Hydrogen peroxide release from human blood platelets. Biochim. Biophys. Acta. 718: 21-25.
Fridovich I. (1989) Superoxidase dismutase. An adaptation to a paramagnetic gas. J. Biol. Chem. 164: 7761.
Farr, S. A., Flood, J. F. & Moley, J. E. (2000) The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posittrial memory processing in the hippocampus. Neurobiol Learn Mem. 83(2): 173-7.
Flood, J. F., Harris, F. J. & Morley, J. E. (1996) Age-related changes in hippocampal drug facilitation of memory processing in SAMP8 mice. Neurobiol Aging. 17: 15-24.
Flood, J. F. & Morley, J. E. (1992) Early onset of age-related impairment of aversive and appetitive learning in the SAM-P8 mouse. J. Gerontol. 47: B52-B59.
Farr, S. A., Poon, H. F., Dogrukol-AK, D., Drake, J., Banks, W. A., Euerman, E., Butterfie, D. A. & Morley, J. E. (2003) The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J. Neurochem. 84: 1173-1183.
Flood, J. F. & Morley, J. E. (1993) Age-related changes in foodshock avoidance acquisition and retention in senescence accelerated mouse(SAM). Neurobiol. Aging 14: 153-157.
Guan, Z. Z., Miao, H., Tian, J. Y., Unger, C., Nordberg, A. &Zhang, X. (2001) Suppressed expression of nicotinic acetylcholine receptors by nanomolor beta-amyloid peptides in PC12 cells. J Neurotransmission-General Section. 108: 1417-1433.
Gsell, W., Conrad, R., Hickethier, M., Sofic, E., Frohlich, L., Wichart, I., Jellinger, K., Moll, G., Rasmayr, G., Beckmann, H. & Riederer, P. (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J. Neurochem. 64: 1216-1223.
Greenspan, F. S. & J. D. Baxter. (1994) Basic and clinical endocrinology. 4th ed Appleton and Lange.
Guo, Q., Zhao, B., Li, M., Shen, S. & Xin, W. (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid-peroxidation in synaptosomes. Biochim. Biophys. Acta. 1304: 210-222.
Halliwell B. (1987) Oxidants and human disease: some new concepts. FASEB J. 1: 358-364.
Halliwell, B., Gutteridge, J. M. C. & Cross, E. E. (1992) Free radicals, antioxidants and human disease. J. Lab. Clin. Med. 119: 598-620.
Hosokawa, M. (1994) Grading score system; a method of evaluation of the degree of senescence in senescence-accelerated mouse (SAM). The SAM model of senescence. pp. 23-28.
Haslam, E. (1989) Plant polyphenols. Cambridge Press, Cambridge.
Hatano, T., Edmatsu, R., Hiramatsu, M. & Mori, A. (1989) Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical and on 1,1-diphenyl-2-prerythydrazyl radical. Chem. Pharm. Bull. 37: 2016-2021.
Hong, C. Y., Wang, C. P., Lo, Y. C. & Hsu, F. L. (1994) Effect of flavan-3-ol tannins purified from camellia sinensis on lipid peroxidation of rat heart mitochondria. Am. J. Chinese Med. 22: 285-292.
Hamdaoui, N., Hedhili, A., Doghri, T. & Tritar, B. (1997) Effect of tea gains and iron, cooper, zinc, magnesium concentrations in blood, liver, duodenum and spleen. Ann. Nutr. Metab. 41(3): 196-202.
Hara, Y. & Honda, M. (1990) The inhibition of a-amylase by tea polyphenols. Agric, Biol. Chem. 54(8): 1939-1945.
Honda, M. & Hara, Y. (1993) Inhibition of rat small intestinal sucrase and α- glucosidase activities by tea polyphenols. Biosci. Biotech. Biochem. 57(1): 123-124.
Iuliano, L., Pratico, D., Ghiselli, A., Bonavita, M. S. & Violi, F. (1991) Superoxide dismutase triggers activation of primed platelets. Arch. Biochem. Biophys. 289: 180-183.
Ikeda, I., Imasato, y., Sasaki, E., Nakayama, M., Nagao, H., Takeo, T., Yayabe, F. & Sugano, M. (1992) Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. BBA. 1127: 141-146.
Jovanovic S., Steenken S., Tosic M., Marjanovic B., Simic M. G. (1994)
Flavonoids as antioxidants. J. Am. Chem. Soc. 116: 4846-4851.
Jialal I. & Grundy S. M. (1991) Preservation of the endogenous antioxidants in low-density lipoproteins by ascorbate but not probucol during oxidative modifications. J. Clin. Invest. 87: 597-601.
Jankun, J., Selman, S. H. & Swiercz, R. (1997) Why drinking green tea could prevent cancer. Nature. 387(5): 561.
Katzman, R. (1986) Alzheimer’s disease. N. Engl. J. Med. 314: 964-971.
Karbownik M. and Lewinski A. (2003) The role of oxidative stress in
physiological and pathological processes in the thyroid gland; possible
involvement in pineal-thyroid interactions. Neuro Endocrinol Lett. 24:
293-303.
Klaunig, J. E. (1992) Chemopreventive effects of green tea components on hepatic carcinogenesis. Preventive. Med. 21: 510-519.
Klebanoff, S. J. (1988) Phagocytic cells: products of oxygen metabolism. In: Gallin, J. I., Goldstein, I. M., Synderman, R. eds. Inflammation: Basic principles and clinical correlates. New York Raven. pp. 319-444.
Kim, H. G., Hong, S. M., Kim, S. J., Jung, H. I., Lee, Y. Y., Moon, J. S., Lim, H. W., Park, E. H. & Lim, C. J. (2003) Age-related changes in the activity of antioxidant and redox enzymes in rats. Mol. Cells. 16(3): 278-84.
Katzman, R. & Jackson, J. E. (1991) Alzheimer disease: basic and clinical advances. J. Am. Geriatr. Soc. 39(5): 516-25.
Kumar, V. B. Farr, S. A., Flood, J. F., Kamlesh, V., Franko, M., Banks, W. A. & Morley, J. E. (2000) Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein an reverses deficits in learning and memory in aged SAMP8 mice. Peptides 21: 1769-1775.
Kauto, H., Yokoi, I., Mori, A., Murakami, H. & Sawada, S. (1995) Neurochemical changes related to aging in the senescence-accelerated mouse brain and the effect of chronic administration of minodipine. Mech. Ageing Dev. 80: 1-9.
Leoncini, G., Maresca, M. & Colao, C.(1991) Oxidative metabolism of human platelets. Biochem. Int. 25: 647-655.
Lovell, M. A., Ehmann, W. D., Butler, S. M. & Markesbery, W. R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology. 45: 1594-1601.
Liu, J. & Mori, A. (1993) Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the rain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech Ageing Dev. 71(1-2): 23-30.
Luo, M., Wahlqvist, M. L. & O’Brien, R. C. (1997) Inhibition of LDL oxidation by green tea extract. Lancet. 349: 360-361.
Lin, A. M., Chyi, B. Y., Wu, L. Y., Hwang, L. S. & Ho, L. T. (1998) The antioxidative property of green tea against iron-induced oxidative stress in rat brain. Chinese. J. Phys. 41(4): 189-194.
Lotito, S. B. & Fraga, C. G. (1998) (+)-Catechin prevents human plasma oxidation. Free Radic. Biol. Med. 24(3): 435-441.
Li, B. Q., Zhang, H. L., Shu, Q. L., Zhang, B. C. & Ge, S. F. (1996) Studies on the extraction of polysaccharide from middle and lower middle grade green tea and the effectiveness on blood-glucose depressing. J. Tea Sci. 16(1): 67-72.
McGeer, P. L., McGeer, E. G., Suzuki, J., Dolman, C. E. & Nagai, T. (1984) Aging, Alzheimer’s disease and the cholinergic system of the basal forebrain. Neurology. 34: 741-745.
Marcus, A. J., Silk, S. T., Safier, L. B. & Ullmann, H. L. (1977) Superoxide production and reducing activity in human platelets. J. Clin. Invest. 59: 149-158.
Mario, C., Cinzia, S., Giuseppe, B. & Lucia, C. (2002) Iron release, oxidative stress and erythrocyte ageing. Free Radic Biol Med. 32(7): 568-76.
Mehlhorn, R. J. & Cole, G. (1985) The free radical theory of aging: a critical review. Adv. Free Radic. Biol. Med. 1: 165.
Morley, J. E. (2002) The SAMP8 mouse: a model of Alzheimer disease? Biogerontology 3: 57-60.
Markesbery, W. R. (1997) Oxidative stree hypothesis in Alzheimer’s disease. Free Radic Biol Med. 23(1): 134-47.
Mark, R. J., Hensley, K., Butterfield, D. A. & Mattson, M. P. (1995) Amyloid beta-peptide impairs ion-motive ATPase activities:evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci. 15(9): 6239-49.
Marklund, S. L., Adolfsson, R., Gottfries, C. G. & Winblad, B. (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J. Neurol. Sci. 67: 319-325.
Morley, J. E., Banks, W. A., Kumar, V. B. & Farr, S. A. (2004) The SAMP8 mouse as a model for Alzheimer disease: studies from Saint Louis University. Int Congr Ser. 1260: 23-28.
Miyamoto, M. (1994) Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP 8 mice. In: Takeda T ed. The SAM model of senescence. Amsterdam: Excerpta Medica, Elsevier Science BV, 61-6.
Mangiapane, H., Thomson, J., Salter, A., Brown, S., Bell, D. & White. D. A. (1992) The inhibition of the oxidation of low-density lipoprotein by (+)-catechin, a naturally occurring flavonoid. Biochem. Pharmacol. 43: 445-450.
Miura, S., Watanabe, J., Tomita, T., Sano, M. & Tomita. I. (1994) Inhibitory effects of tea polyphenols (flavan-3-olderivatives) on Cu2+-mediated oxidative modification of low-density lipoprotein. Biol. Pharm. Bull. 17: 1567-1572.
Matsumoto, N., Ishigaki, F., Ishigaki, A. & Iwashina, H. (1993) Reduction of blood glucose levels by tea catechin. Biosci. Biotech. Biochem.,57(4): 525-527.
Muramatsu, Kk., Fukuyo, M. & Hara, Y. (1986) Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 32: 613-622.
Morley, J. E., Kumar, V. B., Bernardo, A. F., Farr, S. A., Uezu, K., Tumosa, N. & Flood, J. F. (2000) β-Amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides 21: 1761-1767.
Newton, R. K., Ducore, J. M. & Sohal, R. S. (1989) Relationship between life expectancy and endogenous DNA single-strand breakage, strand break induction and repair in the adult housefly. Mech. Ageing Dev. 49: 259.
Nakahara, H., Kanno, T., Inai, Y., Utsumi, K., Hiramatsu, M., Mori, A. & Packer, L. (1998) Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Radic. Biol. Med. 24(1): 85-92.
Nicolosi, R. J., Lawton, C. W. & Wilson, T. A. (1999) Vitamin E reduces plasma low density lipoprotein cholesterol, LDL oxidation, and early aortic atherosclerosis compared with black tea in hypercholesterolemic hamsters. Nutr. Res. 19(8): pp. 1201-1214.
Nakagawa, K. & Miyazawa, T. (1997) Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J. Nutr. Sci. Vitaminol. 43(6): 679-684.
Oberley L. W. (2005). Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomd Pharmacother. 59: 143-148.
Ozturk, O. & Gumuslu, S. (2004) Changes in glucose-6-phosphate dehydrogenase, copper, zinc-superoxide dismutase and catalase activities, glutathione and its metabolizing enzymes, and lipid peroxidation in rat erythrocytes with age. Exp Gerontol. 39(2): 211-6.
Olariu, A., Tran, M. H., Yamada, K., Mizun, M., Hefco, V. & Nabeshima, T. (2001) Memory deficits and increased emotionality induced by beta-amyloid(25-35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. J Neural Transm. 108(8-9): 1065-79.
Okabe, S., Suganuma, M., Hayashi, M., Sueoka, E., Komori, A. & Fujiki, H. (1997) Mechanisms of growth inhibition of human lung cancer cell, PC-9, by tea polyphenols. Jpn. J. Cancer Res. 88(7): 639-643.
Papa, S. & Skulachev, V. P. (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 174: 305-319.
Palomero, J., Galan, A. I., Munoz, M. E., Tunon, M. J., Gonzalez-Gallego, J. & Jimenez, R. (2001) Effects of aging on the susceptibility to the toxic effects of cyclosporine A in rats. Free Radic. Biol. Med. 30(8): 836-845.
Richards, D. M., Dean, R. T. & Jessup, W. (1988) Membrane protein are critical targets in free radical mediated cytolysis. Biochim. Biophys. Acta. 946: 281-288.
Reaven P. D. & Witztum (1996) Oxidized low density lipoproteins in atherogenesis: Role of dietary Modification. Annu. Rev. Nutr. 16: 51-71.
Rebrin, I. & Sohal, R. S. (2004) Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp. Gerontol. 39(10): 1513-9.
Rosenzweig, M. R. (1991) Stage of memory formation in the chick, findings and problems. Neural and Behavioural Plasticity, Oxford University press. 394-418.
Roul, M., Tunmer, W. Phonemic segmention skill and spelling acquisition. Applied Psycholinguistics, 1988(9): 335-350.
Record, I. R. & Dreosti, I. E. (1998) Protection by black tea and green tea against UVB and UVA+B induced skin cancer in hairloss mice. Mutat. Res. 422(1): 191-199.
Selkoe, D. J. (1991a) Amyloid protein and Alzheimer’s disease. Sci. American. Nov: 40-47.
Selkoe, D. J. (1991b) The molecular pathology of Alzheimer''s disease. Neuron. 6: 487-498.
Sanderson, G. W. (1972) The chemistry of tea and tea manufacturing. Adv. Phytochem. 5: 247.
Serafini M., Ghiselli A., Ferro-Luzzi A. (1996). In vivo antioxidant effect
of green and lack tea in man. Eur. J. Clin. Nutr. 50: 28-32.
Salvemini, D., De Nucci, G., Sneddon, J. M. & Vane, J. R. (1989) Superoxide anions enhance platelet adhesion and aggregation. Br. J. Pharmacol. 97: 1145-1150.
Schechter SR. (1996) Fighting free radicals with antioxidant. Health food Business 6: 28-29.
Sohal, R. S. & Allen, R. G. (1990) Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp. Gerontol. 25: 499.
Sato, E., Oda, N., Ozaki, N., Hashimoto, S., Kurokawa, T. & Ishibashi, S. (1996) Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse. Mech. Ageing Dev. 105(86): 105-114.
Sliverman A. P. (1978) Animal Behavior in the laboratory. Fist Published. London: Chapman Hall Ltd. 57-438.
Sheila, A., Wiseman, D. A., Balentine, F. & Balz, F. (1997) Antioxidants in tea. Crit. Rev. in Food Sci. and Nutr. 37(8): 705-718.
Salah, N., Miller, N. J., Pagana, G., Tijburg, L., Bolwell, G. P. & Rice-Evans, C. (1995) Polyphenolic flavonoids as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322: 339-346.
Suganuma, M., Okabe, S., Kai, Y., Sueoka, N., Sueoka, E. & Fujiki, H. (1999) Synergistic effects of (-)-epigallocatechin gallate with (-)-epicatechin, sulindac, or tamoxifen on cancer preventive activity in the human lung cancer cell line PC-9. Cancer Res. 59(1): 44-47.
South, P. & Miller, D. (1998) Iron binding by tannic acid: effects of selected ligands. Food Chem. 63: 167-172.
Sayama, K., Lin, S., Zheng, G. & Oguni, I. (2000) Effects of green tea on growth, food utilization and lipid metabolism in mice. In Vivo. 14(4): 481-4.
Shimada A., Keino H., Satoh M., Kishikawa M., Seriu N., Hosokawa M.
(2002) Age-related progressive neuronal DNA damage associated with
cerebral degeneration in a mouse model of accelerated senescence. J.
Gerontol. A Biol. Sci. Med. Sci. 57: B415-B421.
Sanz, N., Diez-Fernandez, C., Andres, D. & Cascales, M. (2002) Hepatotoxicity and aging : endogenous antioxidant systems in hepatocytes from 2-,6-,12-,18- and 30-month-old rats following a necrogenic dose of thioacetamide. Biochem. Biophys. Acta. 1587(1): 12-20.
Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Lydia, V. K., Gusella, J. F. & Neve, R. L. (1988) Proteinase inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature. 331: 532.
Takeda, T. Hosokawa, M. & Higuchi, K. (1991) Senescence accelerated mouse(SAM): A novel murine model of accelerated senescence. J. Am. Geriatr. Soc. 39: 911-919.
Takeda, T., Hosokawa, M., Takeshita, S., Irino, M., Higuchi, K., Matsushita, T., Tomita, Y., Yasuhira, K., Hamamoto, H., Shimizu, K., Ishii, M. & Yamamuro, T. (1981) A new murine model of accelerated senescence. Mech. Ageing Dev. 17: 183-194.
Tournaire, C., Croux, S., Maurette, M., Beck, L., Hocquaux, M., Braun, A. M. & Oliveros, E. (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1O2) quenching. J. Photochem. Photobiol. Bi. Biol. 19: 205-215.
Van Acker SABE, van den Berg DJ, Tromp MNMJL, Griffioen DHJ, van
Bennekom WP, vander Jilgh WJF, Bast A. (1996) Structural aspects of
antioxidant activity of flavonoids. Free Radic. Biol. Med. 20: 331-342.
Vizi, E. S. & Kiss, J. P. (1998) Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus 8: 566-607.
Vaucher, E., Aumont, N., Pearson, D., Rowe, W., Poirier, J. & Kar, S. (2001) Amyloid beta peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and –unimpaired rats. J Chem Neuroanat 20: 127.
Vinson, J. A., Jang, J., Dabbagh, Y. A., Serry, M. M. & Cai, S. (1995) Plant polyphenols exihibit lipoprotein bound antioxidant activity using an in vitro oxidation model for heart disease. J. Agric. Food Chem. 43: 2798-2799.
Wei Y. H., Ma Y. S., Lee H. C., Lee C. F. and Lu C. Y. (2001). Mitochondrial theory of aging matures-roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi (Taipei) 64: 259-270.
Wei, H., Zhang, X., Zhao, J. F., Wang, Z. Y., Bickers, D. & Lebwohl, M. (1999) Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas. Free Radic. Biol. Med. 26: 1427-1435.
Watanabe, J., Kawabata, J. & Nidi, R. (1998) Isolation and identification of acetyl- CoA carboxylase inhibitors from green tea. Biosci. Biotechno. Biochem. 62(3): 532-534.
Welsch, C. A., Lachance, P. A. & Wassweman, B. P. (1989) Dietary phenolic compounds : inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J. Nutr. 119: 1698-1704.
Yu, B. P. (1994) Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139-162.
Yatin, S. M., Yatin, M., Varadarajan, S., Ain, K. B. & Butterfield, D. A. (2001) Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity. J. Neurosci. Res. 63(5): 395-401.
Yagi, K., Yoshino, K. & Komura, S. (1988) Lipid peroxide level in the senescence- accelerated mouse. J. Clin, Biochem. Nutr. 5: 21-27.
Yasuda, H. & Arakawa, T. (1995) Deodorizing mechanism of (-)-epigallocatechin gallate against methyl mercaptan. Biosci. Biotech. Biochem. 59(7): 1232.
Zs-Nagy, I. (1978) A membrane hypothesis of aging. J. Theor. Biol. 75: 189-195.
Zs-Nagy, I. (1990) Dietary antioxidants and brain aging: hopes and facts, In: The Protential for Nutritional Modulation of Aging Processes (Ingram D. K., Baker G. T. and Shock N. W., eds), pp. 379-399. Food and Nutrition Press, Trumbell.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top