(3.238.7.202) 您好!臺灣時間:2021/03/04 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張益意
研究生(外文):Yi-Yi Chang
論文名稱:BacillussubtilisYJ-1生產胞外蛋白條件之探討及其在雞肉加工上之應用
論文名稱(外文):Study on Cultivation Conditions on the Production of Extracellular Proteases from Bacillus subtilis YJ-1 and Application in Chicken Processing
指導教授:江善宗
指導教授(外文):Shann-Tzong Jiang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006/07/
畢業學年度:94
語文別:中文
論文頁數:63
中文關鍵詞:納豆激鹼性蛋白
外文關鍵詞:nattokinasealkaline protesae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究擬探討Bacillus subtilis YJ-1生產蛋白之最適培養條件,再利用該酵素液對雞胸肉進行水解,評估所得水解物之抗氧化能力及胜與胺基酸含量。結果顯示Bacillus subtilis YJ-1在含1 % skim milk、1% soya meal、1 % rice、0.5 % Sucrose、0.5% NaCl之最適培養基下,於5L發酵槽培養60小時,納豆激活性達22.5 FU/ml,中、鹼性蛋白在修飾培養基:1% skim milk+3% soy meal+0.5% glucose+1% NaCl+0.05% K2HPO4 +0.05% MgCl•6H2O+0.1% glucoseamine培養72小時分別達27 unit/ml與197 unit/ml,pH 值由12小時為6.74,上升至72小時為8.23。利用該酵素液於50oC水解雞肉0-5小時,結果發現雞肉水解5小時後,產物胜含量由0.527mg/ml 隨水解時間增加至32.867 mg/ml。同時觀察SDS-PAGE 電泳分析雞肉於不同水解時間後蛋白質降解之變化,結果發現雞肉漿水解產物隨著水解時間增加大分子逐漸消失,於5小時雞肉漿中蛋白質分子明顯由大分子降解至小分子。雞肉經水解之游離胺基酸 (free amino acid, FAA) 含量之變化大部份 FAA 之含量皆有增加趨勢,其中以Glutamic acid、Isoleucine、β-Alanine、γ-ABA、Ornithine 之增加量最為明顯。在雞肉水解物中也發現有γ-ABA( γ-aminobutyric acid)(GABA)存在為一神經傳導物質,有降血壓、抗憂鬱之功效其雞肉水解物中以添加失活酵素水解獲得的0.07 mg/100g 經水解5小時後上升達2.49 mg/100g。雞肉水解物之抗氧化活性試驗,雞肉水解物捕捉DPPH自由基的能力隨著水解時間增加而增加,於5小時水解後其清除能力由24% 增加至55%。雞肉漿水解物之還原力,在水解2小時後吸光值為最高達 0.36 nm,有小幅提升還原力的效果。
Abstract
To investigate the optimum conditions for the production of protease by Bacillus subtilis YJ-1, the medium containing 1 % skim milk, 1 % soya meal, 1 % rice, 0.5 % sucrose, 0.5% NaCl seemed to the best medium for Bacillus subtilis YJ-1 fermentation in 5-L fermentor. The Nattokinase activity was 22.5 FU/mL after 60 hrs fermentation. The hightest neutral and alkaline proteases was obtained when the medium was the mixture of 1% skim milk, 3% soy meal, 0.5% glucose, 1% NaCl, 0.05% K2HPO4, 0.05% MgCl•6H2O and 0.1% glucoseamine. Their activies were 27 and 197 unit/mL, respectively, and the pH increased from 6.74 to 8.23 after 72 fermentation at 37oC. The collected enzymes from 72-hr fermented broth were employed to hydrolyze the chicken. The soluble peptides increased from 0.527mg/ml to 32.867 mg/ml after 5 hrs hydrolysis at 50oC. SDS-PAGE indicated the obvious degradation of chicken protein was observed during 5 hrs hydrolysis at 50 oC by enzymes from Bacillus subtilis YJ-1 after 72 hr fermentation. The free amino acids (FAA) of hydrolyzed chicken, especially glutamic acid, isoleucine, β-alanine, γ-ABA and ornithine increased significantly with the duration of hydrolysis. The DPPH scavenging capability and reducing power of the hydrolysate significantly increased after 5 hrs fermentation. This phenomenon indicated that chicken could be substantially hydrolyzed by Bacillus subtilis YJ-1 proteases and subsequently increased the antioxidative ability.
目錄
目錄----------------------------------------------------------------------------------I~VII
表目錄-----------------------------------------------------------------------------------IV
圖目錄------------------------------------------------------------------------------------V
中文摘要--------------------------------------------------------------------------------VI
英文摘要-------------------------------------------------------------------------------VII
第一章 前言----------------------------------------------------------------------------1
第二章 文獻回顧----------------------------------------------------------------------2
一、枯草桿菌簡介----------------------------------------------------------------------2
(一)生理特性--------------------------------------------------------------------------2
(二)Bacillus 的分類-----------------------------------------------------------------2
(三) Bacillus subtilis 分泌之酵素及產業上之應用----------------------------3
1、蛋白(Proteases) ---------------------------------------------------------------3
2. 血栓溶解酵素-納豆激(Nattokinase) -------------------------------------5
(一)、納豆激的發現及其特性--------------------------------------------------5
(二)、血液凝固(Blood Clotting) 與血栓溶解之關聯-------------------------5
(三)、納豆激之安定性及功能性----------------------------------------------7
(四)、含有血栓溶解酵素之發酵產品-------------------------------------------7
3、α-澱粉(-Amylase)-----------------------------------------------------------8
4、其他酵素-----------------------------------------------------------------------8
二、微生物之增殖及營養需求------------------------------------------------------9
1、碳源-----------------------------------------------------------------------------9
2、氮源-----------------------------------------------------------------------------10
3. 維生素與微量元素------------------------------------------------------------10
三、蛋白質水解及其水解物利用--------------------------------------------------10
四、抗氧化活性-----------------------------------------------------------------------12
1.自由基---------------------------------------------------------------------------------12
2.生物體之抗氧化防禦系統---------------------------------------------------------13
3 抗氧化劑的作用機制--------------------------------------------------------------13
(1) 自由基終止型(Free radical terminators) -------------------------------------13
(2) 還原劑或氧清除劑者( Reducing agents or oxygen scavengers) ---------13
(3)螯合劑型(Chelating agents) -----------------------------------------------------14
第三章 材料與方法------------------------------------------------------------15
第一節 實驗材料-------------------------------------------------------------------15
第二節 實驗流程-------------------------------------------------------------------17
第三節 實驗方法-------------------------------------------------------------------18
一、 菌株之活化與保存 -----------------------------------------------------------18
二、 菌株培養基組成對菌種生長之影響 --------------------------------------18
1、菌數之計數 -----------------------------------------------------------------18
2、pH值之測定 -----------------------------------------------------18
3、酵素活性測定--------------------------------------------------18
三、Bacillus subtilis 之粗酵素液製備--------------------------------------------20
四、酵素水解物之製備 ------------------------------------------------------------20
五、水解物之成份變化-------------------------------------------------------------20
1、可溶性蛋白質含量測定----------------------------------------------------20
2、胜含量測定----------------------------------------------------------------21
3、游離胺基酸分析- -------------------------------------------------------------21
4、電泳分析----------------------------------------------------------------------22
六、水解物之抗氧化探討 ----------------------------------------------------------22
1. 清除DPPH自由基能力之測定----------------------------------22
2. 還原力測定-------------------------------------------------------------------22
3. Trolox equivalent antioxidant capacity (TEAC)--------------------------23
4. 螯合亞鐵離子能力----------------------------------------------------------23
七、統計分析-------------------------------------------------------------------------23
第四章 結果與討論----------------------------------------------------------24
一、菌種之生理特性探討----------------------------------------------------------24 1.Bacillus subtilis YJ-1之生長情形----------------------------------------------24
二、培養基組成對生產Nkase活性之影響--------------------------------------24
(1)最適碳、氮源-----------------------------------------------------------------------24
(2)以濃縮方式提高Nkase之活性--------------------------------------------------24
三、利用發酵槽擴大量產------------------------------------------------------------25
(1)添加酸與鹼控制pH對其生產Nkase之活性影響---------------------------25
(2)修飾培養基組成對其生產蛋白之活性影響--------------------------------25
(3)修飾培養基對其中、鹼性蛋白活性影響-----------------------------------27
四、雞肉水解物之成份變化---------------------------------------------------------27
(1) 可溶性蛋白及胜含量之變化------------------------------------------------27
(2) 游離胺基酸分析------------------------------------------------------------------28
(3)電泳分析-----------------------------------------------------------------------------29
五、雞肉水解物之抗氧化活性試驗------------------------------------------------29
(1)清除α, α-diphenyl-β-picrylhydrazyl (DPPH)自由基能力--------------------29
(2)還原力--------------------------------------------------------------------------------30
(3) Trolox equivalent antioxidant capacity (TEAC) ------------------------------30
(4)螯合亞鐵離子能力-----------------------------------------------------------------30
第五章 結論--------------------------------------------------------------------------32
參考文獻--------------------------------------------------------------------------------55





表目錄

表一 商業用細菌性鹼性蛋白之商品名、來源及應用--------------------33
表二 以不同碳、氮源培養Bacillus subtilis YJ-1 3天NKase與
pH變化情形-----------------------------------------------------------------34
表三 以表二之E組配方進行濃縮NKase之變化情形----------------------35
表四 Bacillus Subtilis YJ-1於5L發酵槽量產之NKase之變化情形------36
表五 Bacillus Subtilis YJ-1於5L發酵槽量產,發酵第36小時添加
1%黃豆粉之NKase之變化情形------------------------------------------37
表六 水解過程水解物中可溶性蛋白及胜含量之變化-------------------38
表七 雞肉水解產物於及水解期間之游離胺基酸含量(mg/100 g)變化--39

圖目錄

圖一 納豆菌培養液的人工血栓溶解活性-----------------------------------40
圖二 納豆激之組成結構-----------------------------------------------------41
圖三 血塊形成步驟--------------------------------------------------------------42
圖四 水解血栓中Fibrin之機制------------------------------------------------43
圖五 納豆激對血栓溶解的變化情形-------------------------------------44
圖六 Bacillus subtilis YJ-1以TSA在37 oC培養36小時後之菌相------45
圖七 Bacillus subtilis YJ-1以TSB培養3天其菌數、pH變化情形-------46
圖八 不同發酵時間之NKase於人工血纖維蛋白平板試驗---------------------47
圖九 Bacillus subtilis YJ-1以修飾培養基於37 oC培養3天生菌數
、pH變化情形----------------------------------------------------------------48
圖十 Bacillus subtilis YJ-1於修飾培養基培養72hr中、鹼性蛋白
活性之變化------------------------------------------------------------------49
圖十一 利用Bacillus subtilis YJ-1胞外酵素水解雞肉漿之
SDS-PAGE分析圖--------------------------------------------------------50
圖十二 雞肉水解物於50℃水解5小時清除DPPH自由基之變化---------51
圖十三 雞肉水解物於50℃水解5小時之還原力變化-----------------------52
圖十四 雞肉水解物於50℃水解5小時TEAC值之變化---------------------53
圖十五、雞肉水解物於50oC水解5小時之螯合亞鐵離子能力之變化------54
參考文獻
王淑貞:黃麴菌及枯草菌超氧歧化之研究,靜宜大學食品營養學系碩士論文,(1999).
向明:生物技術,田蔚城主編。九州圖書文物有限公司,(1996).
呂易珍:液態納豆應用於化妝品之研究。靜宜大學應用化學系碩士論文,(2004).
李春蓮:Bacillus licheniformis 聚木糖分解酵素之純化與生化特性探討。國立屏東科技大學食品科學系碩士論文,(2000).
邱子玲:自然環境及市售納豆產品中Bacillus分離株之特性分析及種類鑑
定,輔仁大學生命科學系碩士論文,(2004).
吳侑軒:液態黑納豆對於皮膚保健之研究。靜宜大學應用化學系碩士論文,(2004).
范敏慧:枯草菌IMR-NK-1血纖維蛋白之純化及性質研究,靜宜大學食品營養學系碩士論文,(1994).
高幸子:納豆抗氧化之研究,屏東科技大學食品科學系碩士論文,(2004).
林麗菁:納豆枯草菌之液態培養及其產生納豆激之探討。屏東科技大學
食品科學系碩士論文,(2004).
張文重:蛋白質分解酵素(構造 功能 進化及應用)。國立編譯館(1976).
陳國誠:微生物酵素工程學。藝軒出版社(1989).
陳鴻章及金安兒:食品生物化學。偉明圖書有限公司(2001).
陳威銘:研發利用紅麴菌發酵生產機能性魚肉產品之新技術。國立台灣海
洋大學食品科學系碩士論文,(2003).
須見洋行:納豆治百病。培琳出版社。(1998).
須見洋行:納豆激的驚異療效。青春出版社。(2002).
許元勳:現代生物科技的新寵兒-神奇納豆菌。生物產業14(1):53-9 (2003).
陳金山、除淑媛譯:圖解彩色基礎人體解剖與生理學 合記圖書出版社(2000).
陳淑茹:石蓮萃取物之抗氧化活性及抗致突變性研究。靜宜大學食品營養學系碩士論文,(2003).
黃宗慶:攝食枯草菌發酵大豆、黑豆及薏仁對老鼠血液血纖維蛋白水解活
性及凝血作用之影響。靜宜大學食品營養學系碩士論文,(1999).
郭斐琪:枯草菌IMR-NK-1 強力血纖維蛋白之特性研究。靜宜大學食品
營養學系碩士論文,(1995).
黃卓治、辛志勳、張文重:納豆菌之研究I納豆菌培養條件之檢討。屏東農專學報18:69-75 (1977a).
黃卓治、辛志勳、張文重:納豆菌之研究II引絲納豆之製造。屏東農專學報18:76-80 (1977b).
童雅玲:米麴菌蛋白水解與併用乳酸菌發酵對鯖魚肉機能性之影響。海洋大學食品科學系碩士論文,(2004).
楊炯政:利用酵素水解白肉雞、鮭魚和文蛤肉作為保健食品基質之研究。中國文化大學生活應用科學研究所碩士論文,(2004).
廖曉玲:新世紀醫學-納豆天然的藥用食品。安立出版社。台北,台灣(2002).
鄧德豐:應用微生物學。睿煜出版社。屏東,台灣(1996).
蘇遠志、黃世佑:微生物化學工程學。華香園出版社,(1994).
鄭靜桂:蛋白質之水解與水解液之利用。食品工業29(5):10-17(1997).
蘇遠志:納豆菌代謝產物的開發與應用。生物產業14(2):117-30(2003).
蘇遠志:應用微生物學。華香園出版社(1999).
AmarowiczR, Shahidi F. 1997. Antioxidant activity of peptide fraction of capelin protein hydrolysates. Food Chemistry 58: 355–359.
Ammar YB, Matsubara T, Ito K, Iizuka M, Minamiura N. 2002. Some properties of levansucrase of Bacillus natto stabilized with periodate oxidized glucomannan.Enzyme and Microbial Technology 30:875-882.
Amos JA. 1955. The use of enzymes on the baking industry. J. Sci. Food Agric 6:489.
AOAC.1997.Offical Methods of Analysis. 16th ed. Association of official Analytical Chemists. Washington, DC, USA.
Astawan M, Wahyuni M, Yasuhara T, Yamada K, Tadokoro T, MaekawaA. 1995. Effects of angiotensin I - converting enzyme inhibitory substances derived from Indonesian drued-salted fish on blood pressure of rats. Biosci. Biotech. Biochem 59: 425-429.
Banerjee UC, Sani RK, Azmi W, Soni R.1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem 35 (1-2): 213-219.
Boldyrev AA,Gallant SC,Sukhich GT.1999.Camosine the protective anti-aging peptide.Bio Sci Reports 19:581-587.
Chan WKM,Decker EA,Chow CK,Boissonneault GA.1994.Effect of dietary Camosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle lipids 29:461-466.
Chang CC, Ryu DD ,Park Y,Kim JY.1997. Enhancement of rice a-amylase production in recombinant Yarrowia lipolytica. J. Ferment. Bioeng 84(5): 421-427.
Chang CT, Fan MH, Kuo FC, Sung HY. 2000. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48:3210-3216.
Chen HM, Muramoto K,Yamauchi F.1995.Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem 43(3): 574-578.
Chu I M, Lee C,Li TS. 1992. Production and degradation of alkaline protease in batch culture of Bacillus subtilis ATCC14416. Enzyme Microb.Technol 14: 755-761.
Decker EA,Crum AD,Calvert JT.1992.Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric.Food Chem 40: 756-759.
Decker EA,Ivanov V,Zhu BZ,Frei B.2001.Inhibition of low density lipoprotein oxidation by camosine and histidine .J Agric Food Chem 49:511-516.
Duh PD,Tu YY, Yen CC.1999.Antioxidative activity of water extract of Harng Tyur (Chrysanthemum morifolium Ramat). Lebensm- Wiss, Technol 32: 269-277.
Dziezak JD. 1986. Preservatives: Antioxidants. Food Technol., 40:94-102.
Erickson MC, Hultin HO. 1992. Influence of histidine on lipid peroxidation in sarcoplasmic reticulum. Archives of Biochemistry and Biophysics 292:427–432.
Farag AM, Hassan MA..2004.Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology 34:85-93.
Frokjaer S. 1994.Use of hydrolysates for protein supplementation. Food Technol 48(10):86-8.
Fujiwara N,Yamamoto K.1987. Production of alkaline protease in a low-cost medium by alkalophilic Bacillus sp. and properties of the enzyme. J. Ferment. Technol 65 (3): 345-348.
Giese J,.1996. Antioxidants: Tools for preventing lipid oxidation. Food Technology 50: 73-81.
GodfreyT, West S. 1996. Industrial Enzymoloy. Macmillan Press, London.
Gupta R, Beg QK,Lorenz p.2002.Bacterial alkaline protease molecular
approaches and industrial pplications.Appl.Microbiol.Biotechnol 59:15-32.
Halliwell B,Gutteridge JMC.1998.The chemistry of free radicals and related reactive species.In “Free Radicals in Biology and Medicine.”Halliwell B,Gutteridge JMC.Clarendon Press,Oxford 36-104.
Hoondal GS,Tiwari RP,Dahiya Q,Beg K.2002.Microbial alkaline Pectinases and their industrial applications:a review .Appl.Microbiol Biotech 59:409-418.
Hosoi T, Ametani A, Kiuchi K, Kaminogawa S. 2000. Improved growth and viability of Lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Canadian Journal of Microbiology 46(10):892-897.
Iwai K, Nakaya N, Kawasaki Y, Matsue H. 2002. Inhibitory Effect of Natto, A Kind of Fermented Soybeans, on LDL Oxidation in Vitro . J Agric Food Chem 50:3592-3596.
Johnvesly B,Naik GR. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium 37:139-144.
Joo HS,Kumar CG., Park GC, Kim KT,Paik SR,Chang CS. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii 38:155-159.
Ju Ho Ko , Jun Peng Yan , Lei Zhu , Yi Peng Qi .2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02_ Comp Biochem and Physiol Part C 137:65–74.
Kato T, Itaya T, Tahara T, Sugimoto M, Sato Y. 1990a. Preparation of uncooked semi-dry fermented sausage by lactic acid bacteria. Nippon Shokuhin Kogyo Gakkaishi 37(4): 248-255.
Kato T, Tahara T, Sugimoto M,Sato Y. 1990b. Proteolysis in semi-dry fermented sausage. Nippon Shokuhin Kogyo Gakkaishi 37(9): 715-721.
Keay L, Wildi BS.1970. Proteases of the genus Bacillus :neutral proteases.Biotech. Bioeng 7:179-212.
Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, OH H, Kwon I, Lee S. 1996. Purification and Characterization of a fibrinolytic enzyme producted form Bacillus sp. strain CK11-4 screened from Chungkook-Jang. Applied and Environmental Microbiology 62 (7):2482-2488.
Kole MM., Draper I.,Gerson DF.1988. Protease production by Bacillus subtilis in oxygen-controlled, glucose fed-batch fermentation.Appl. Microbiol. Biotechnol 28: 404-408.
Konosu S,Watanabe K,Shimizu T.1974.Distribution of nitrogenous constituents in the muscle extracts eight speciese of fish. Bull. Jap. Soc. Sci. Fish 40:909-914.
Kumar C, Takagi GH.1999.Microbial alkaline protease:from a bioindustrial viewpoint.Biotech.Adv17:561-594.
Lahl WJ, Braun SD.1994. Enzymatic production of protein hydrolysates for food use. Food Technol 48(10): 68-71.
Lee YS, Noguchi ,TNaito H. 1983. Naito: Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br. J. Nutr 49: 67-76.
Mabrouk SS,Hashem AM,E1-Shayeb NMA, Ismail AM.1999. Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415(69):155-159.
MacAllister RV. 1979. Nutritive sweeteners made form starch. Adv. Carbohydr. Chem. Biochem 36:15-9.
Malathi S,Chakraborty R.1991. Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Applied and Environmental Microbiology 57: 712-716.
Manachini PL.,Fortina MS, Parini C. 1998. Thermostable alkaline protease produced by Bacillus thermorubber: a new species of Bacillus. Appl Microbiol Biotechnol 28:409-413.
Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechno 83: 177-187.
Megias C, Yust MDM, Pedroche J, Giron-Calle LJ, Alaiz M, Millan F, Vioque J. 2004.Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J. Agric. Food. Chem 52: 1928-1932.
Neidleman SL. 1991. Historical perspective on the industrial uses of biocatalysts. In“Biocatalysts for Industry” 21-33. (Edited By Tonathan S.D.) Plenum Press, New York.
Nishimura T,Kato H. 1988. Test of free amino acid and peptides. Food Rev. Int 4(2): 175-194.
Okamoto G, Hayase F, Kato H. 1992. Scavenging of active oxygen species by glycated proteins. Biosci. Biotechnol. Biochem 56: 928-931.
Pan TZ,Lin SH.1991. Fermentative production of alkaline protease as detergent additive. J. Chinese Biochem. Soc 20 (1): 49- 60.
Peng Y, Huang Q, Zhang RH, Zhang YZ. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem and Physiol Part B 134 :45-52.
RahmanR,NZA, Razak CN, Ampon K, Basri M, Yunus WMZW, Salleh, AB. 1994. Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus F1. Appl Microbiol Biotechnol 40:822-827.
Saiga A, Tanabe S, Nishimura T. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem 51: 3661-3667.
Schaich KM., Karel, M. 1975. Free radicals in lysozyme reacted with peroxidizing methyl linoleate. J. Food Sci 40:456-459.
Simic MG, 1988.Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis.Mutat.Res 202:377-386.
Sim MK,Xu CL.1997.Effect of oral feeding of BEC on the level fluid of the rat .Internal J of Food Sci and Nutr 48:113-117.
Sumi H, Hamada H, Nakanishi K, Hiratani H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of Nattokinase I. Acta Haematol 84:139-143.
Sumi H, Hamada H, Tsushima H, Mihara H. 1988. A novel strong fibrinolytic enzyme (Nattokinase) in the vegetable cheese‘‘Natto’’. Fibrinolysis 2:67.
Tsukamasa Y, FukunotoK, AsaiM, TohmoY, Akahane Y, Suzuki F, Yasumoto K. 1989. Change in flavor constituents of pork sausage on curing under aseptic and conventional conditions. Nippon Shokuhin Kogyo Gakkaishi 36(4): 279-285.
U. K.Laemmli.1970.Cleavage oftructural proteins during the assembly of the head of bacteriophage T4.Nature 227:680-685.
Van den B,. Haenen R, Bast A. 1999.Applicability of an improved Trolox equivalent antioxidant capacity(TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66:511-517.
Wade AM,Tucker HN.1998.Antioxidant Characteristics of L-histidine J Nutr Biochem 9:308-315.
Wardlaw FB, Dick RL,Acton JC. 1990. Nonprotein nitrogen (NPN) and free amino acid contents of dry, fermented and nonfermented sausages. Meat Sci 27: 1-12.
Wergedahl H, Liaset B, Gudbrandsen OA, Lied E, Espe M, Muna Z, Mork S, Berge RK. 2004. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats. J Nutr. 134(6):1320-1327.
Yashiro A, Oda S, Sugano M. 1985. Hypocholesterolemic effect of soybean protein in rats and mice after peptic digestion. J. Nutr 115: 1325-1336.
Zheng Zl, Zuo ZY , Liu ZG, Tsai KC , Liu AF, Zou GL. 2005.Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto A novel nucleophilic catalytic mechanism for nattokinase .Journal of Molecular Graphics and Modelling 23:373–380.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔