跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政樺
研究生(外文):Jheng-Hua Lin
論文名稱:不同直鏈澱粉含量稻米及玉米澱粉於酸-甲醇處理中之降解速率及理化特性
論文名稱(外文):Degradation rates and physicochemical properties of rice and corn starches with different amylose contents treated in methanol containing hydrochloric acid
指導教授:張永和張永和引用關係
指導教授(外文):Yung-Ho Chang
學位類別:博士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:150
中文關鍵詞:澱粉酸-甲醇處理降解速率理化性質分子結構
外文關鍵詞:starchacid-methanol treatmentdegradation ratephysicochemical propertiesmolecular structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對不同直鏈澱粉含量之稻米(台中糯70、台農67及台中秈17)及玉米(糯玉米、一般玉米及Hylon V)澱粉探討酸-甲醇處理澱粉之分子降解速率及理化性質,研究中先於25 °C含0.36%鹽酸之甲醇中處理澱粉1~15天後,再分三個部分進行探討:(1)分析不同處理時間所得降解澱粉之分子量並計算其降解速率,且探討澱粉酸-甲醇處理降解速率與澱粉分子結構之相關性;(2)比較不同酸-甲醇處理澱粉理化性質之差異,如顆粒結構、結晶結構、溶解度及糊化熱性質等,以了解酸-甲醇處理對澱粉理化性質之影響;及(3)分析酸-甲醇處理澱粉之回凝熱性質,以探討酸-甲醇處理對澱粉回凝性質之影響。
結果顯示,所選用之澱粉經酸-甲醇處理後其顆粒回收率均高於91%。澱粉分子於酸-甲醇處理過程呈現二階段降解過程,分別為降解速率較慢的第一期及速率較快的第二期。所選用之糯性澱粉於降解第一期所需的時間明顯較非糯性澱粉者短;澱粉之直鏈澱粉含量相近時,米澱粉於降解第一期所需的時間較玉米澱粉者短,且降解第二期的降解速率亦較快。研究中探討之六種澱粉的第二期降解速率與澱粉之支鏈澱粉分支鏈的短長鏈比呈顯著(p < 0.05)負相關性(r = -0.886),並與支鏈澱粉分支鏈的多分散性(polydispersity)呈顯著(p < 0.05)正相關性(r = 0.859)。
經酸-甲醇處理後澱粉仍維持其顆粒結構,其平均粒徑略微下降,部分澱粉顆粒(台中秈17及玉米澱粉)內部有明顯裂縫生成;然澱粉經酸-甲醇處理後其雙股螺旋含量及結晶度變化並不顯著。澱粉於酸-甲醇處理時直鏈澱粉及支鏈澱粉之長分支鏈會優先降解。於65~95°C測定溫度下,酸-甲醇處理澱粉的溶解度均顯著上升。酸-甲醇處理澱粉之糊化溫度範圍亦顯著上升,然糊化熱焓值則變化不大。
糊化後之澱粉糊於4 °C貯存7天後再分析其回凝熱性質,結果得知除台中秈17及一般玉米澱粉外,酸-甲醇處理澱粉之回凝程度均顯著上升;台中秈17及一般玉米澱粉於酸-甲醇處理前後之回凝程度並無顯著差異。酸-甲醇處理台中糯70、台農67、糯玉米及Hylon V澱粉之回凝程度與其平均分子量之對數值均呈顯著一次線性相關性(r2>780, p<0.05),隨酸-甲醇處理澱粉平均分子量下解,澱粉之回凝程度隨之上升,其中又以糯性澱粉(台中糯70及糯玉米澱粉斜率分別為-25.42及-13.98)上升程度高於非糯性澱粉者(台中秈17及Hylon V澱粉斜率分別為-11.51及-2.83)。
綜合得知,澱粉顆粒經酸-甲醇處理後澱粉鏈仍因顆粒限制而未溶出,澱粉顆粒結晶結構於處理過程中有重排的現象;而澱粉分子的降解主要發生於非結晶區,顯示酸-甲醇處理澱粉造成顆粒非結晶區中之澱粉鏈降解,而非水解整個非結晶區造成非結晶區溶解。經酸-甲醇處理後澱粉分子於貯存時澱粉分子之移動性增加,因而使澱粉之回凝程度上升;然而直鏈澱粉存在限制澱粉分子之移動,因此造成非糯性澱粉於酸-甲醇處理後其回凝程度上升趨勢較糯性澱粉者不顯著。
For deliberating the degradation rate and physicochemical properties of acid-methanol treated starch, the mild condition (25 g starch treated in 100 mL methanol containing 0.36% HCl at 25 °C) of acid-methanol treatment was selected in this study. Rice (TCW70, TNG67 and TCS17) and corn (waxy corn, normal corn and Hylon V) starches with different amylose contents were acid-methanol treated with different periods of time (from 1 to 15 days). The aims of this study are to investigate (1) the degradation rates of starches treated in acid-methanol by monitoring the molecular weight of starch treated for different time periods, and the relations between physicochemical properties of native starch and degradation rate of starch treated with acid-methanol; (2) the changes of physicochemical properties of starch, such as molecular structure, granular structure, crystalline structure, solubility, gelatinization thermal properties, after acid-methanol treatment; and (3) the retrogradation properties, determined by differential scanning colorimeter (DSC), of acid-methanol treated starches with different treatment times.
Results indicate that the granule recovery yield of acid-methanol treated starches were higher than 91%. Two-stage molecular degradation pattern was found for the starches studied during acid-methanol treatment; namely, the slow (first) and the rapid (second) degradation stages. Waxy starches showed a shorter time period of the first stage than non-waxy starches. Rice starch showed a shorter time period of the first stage and a higher degradation rate of the second stage than the counterpart corn starch with similar amylose content. In spite of the botanical source and amylose content of starch, the degradation rate of starch in the second stage significantly (p &lt; 0.05) correlated to the S/L ratio (ratio of the weight percentage of short chain divided by the weight percentage of long chain of amylopectin) (r = -0.886) and polydispersity (r = 0.859) of amylopectin branch chains of native starch.
Starches retained its granular structure after acid-methanol treated; only slightly decreased on the granule size and fissures or cavities inside the granules of TCS17 and corn starches after treated were observed. Minor changes on double helix content and crystallinity of starches treated with acid-methanol were also observed. Amylose and long chain of amylopectin of starch were preferentially degraded during acid-methanol treatment. The solubility of starches measured at 65 to 95 °C profoundly increased after acid-methanol treatment and the gelatinization temperature ranges of treated starches also obviously increased with increasing treatment time. However, minor changes on ΔHG between treated starches and the counterpart native starch were observed.
After aging at 4 °C for 7days, the reorder enthalpy (ΔHR) of acid-methanol treated starches increased, except for TCS17 and normal corn starches. Less obvious differences among acid-methanol treated starches and native starch for TCS17 and normal corn starches were found. The ΔHR of TCW70, TNG67, waxy corn and Hylon V starches significantly (r2&gt;664, p&lt;0.05) correlated with the DPw. The decrement on DPw to the increment of ΔHR of non-waxy starches (slope =-1.303 and -0.334 for TNG67 and Hylon V starch, respectively) was obviously lower than that of waxy starches (slope =-3.594 and -2.015 for TCW70 and waxy corn starch, respectively).
Results of studies indicate that that most of starch molecule chains are still restrained in granules even though the degradation of starch molecules is profound. The granular structure and/or crystalline was rearranged during treatment, and the degradation of starch granule occurred mainly in amorphous region. This implies that the degradation of starch treated by acid-methanol may degrade, but not erode, the molecular chain in amorphous region. The degradation of starch increases the mobility of branch chains or molecules of gelatinized starch, which further increases the reorder of acid-methanol treated starch during aging. However, the presence of amylose limits the movement of gelatinized starch molecules, thus less changes on retrogradation of non-waxy starches after acid-methanol treatment were observed.
Contents
摘要 I
Abstract III
Contents VI
Graph Contents VIII
Table Contents X
Literature review 1
1. Acid hydrolyzed starch 1
(1) Mechanisms of acid hydrolysis 2
(2) Degradation kinetics of acid-hydrolysis starch 4
(3) Factors affecting the rate and extent of starch
hydrolysis 10
(4) Physicochemical properties of acid-hydrolysis
starch 13
2. Acid-alcohol modification of starch 31
(1) Mechanisms on acid-alcohol treatment of starch 32
(2) Degradation kinetics of acid-alcohol treated
starch 33
(3) Effect of treatment conditions on degradation rate
or extent of acid-alcohol treated starch 34
(4) Physicochemical properties of acid-alcohol treated
starch 36
3. Application of acid-modified starch 37
Purpose of this study 39
Framework of this study 42
Part I: Molecular degradation rate of rice and corn
starches during acid-methanol treatment and its
relation to the molecular structure of starch 43
1. Introduction 44
2. Materials and methods 46
3. Results and discussion 53
3.1. Physicochemical properties of native starch 53
3.2. Recovery and molecular weight distribution of
acid-methanol treated starch 59
3.3. Degradation rate of starches 63
3.4. Correlations between molecular structure of native
starch and its degradation during acid-methanol
treatment 70
4. Conclusions 73
Part II: Changes on physicochemical properties of corn
and rice starches with different amylose
contents after acid-methanoltreatment 75
1. Introduction 76
2. Materials and methods 77
3. Results and discussion 81
3.1. Granule size, morphology and cross-section of
starch granules 81
3.2. Double helix content and Crystallinity of
starch 85
3.3. Chain length distribution of starches 89
3.4. Solubility of starches 103
3.5. Gelatinization thermal properties of starches 106
4. Conclusions 112
Part III: Effect of acid-methanol treatment on
retrogradation thermal properties of rice
and corn starches 115
1. Introduction 116
2. Materials and methods 118
3. Results and discussion 119
3.1. Retrogradation thermal properties of acid-methanol
treated waxy starches 119
3.2. Retrogradation thermal properties of acid-methanol
treated non-waxy starches 124
3.3. Correlations between retrogradation thermal
properties and chain length distribution parameters
of acid-methanol treated waxy starches 132
3.4. Correlations between retrogradation thermal
properties and chain length distribution
parameters of acid-methanol treated non-waxy starches 135
4. Conclusions 137
Publications 140
Bibliography 141
AACC. 2000. Approved Methods of the American Association of Cereal Chemists. 10th ed. Minnesota: American Association of Cereal Chemists.
Atichokudomchai N, Varavinit S, Chinachoti P. 2002. Gelatinization transitions of acid-modified tapioca starches by differential scanning calorimetry (DSC). Starch 54(7): 296-302.
Atichokudomchai N, Varavinit S, Chinachoti P. 2004. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr Polym 58(4): 383-389.
Atkin NJ, Cheng SL, Abeysekera RM, Robards AW. 1999. Localisation of amylose and amylopectin in starch granules using enzyme-gold labeling. Starch 51(5): 163-172.
Baczkowich M, Tomasik P. 1989. Solvent effect on starch matrix. I. Non-extrathermodynamic considerations. Starch 41(12): 449-452.
Banks W, Greenwood CT, Muir DD. 1973. The characterization of starch and its components. Part 5. Observations on the quantitative acid hydrolysis of starch and glycogen. Starch 25(12): 405-408.
BeMiller JN. 1964. Iodimetric determination of amylose. amperometric titration. In Whistler RL, Smith RJ, BeMiller JN, Wolfrom ML, editors. Methods in carbohydrate chemistry: Volume IV Starch. London: Academic Press. p 157–160.
BeMiller JN. 1965. Acid hydrolysis and other lytic reactions of starch. In: Whistler RL, Paschall EF, editors. Starch: Chemistry and Technology. Vol. 1. New York: Academic Press. p 495.
Bertoft. 2004. Lintnerization of two amylose-free starches of A- and B-crystalline types, respectively. Starch 56(5): 167-180.
Biliaderis CG, Grant DR, Vose JR. 1981. Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem 58(6): 502-507.
Biliaderis CG, Page CM, Slade L, Sirett RR. 1986. Thermal behavior of amylose-lipid complexes. Carbohydr Polym 5(5): 367-389.
Bogracheva TY, Wang YL, Hedley CL. 2001. The effect of water content on the ordered/disordered structures in starches. Biopolymers 58(3): 247-259.
Brumovsky JO, Thompson DB. 2001. Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal Chem 78(6): 680-689.
Chang KLB, Tai MC, Cheng, FH. 2001. Kinetics and products of the degradation of chitosan by hydrogen peroxide. J Agric Food Chem 49(10): 4845-4851.
Chang YH, Lin JH, Lii C-y. 2004. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydr Polym 57(1): 89-96.
Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC. 2005. Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J Agric Food Chem 53(7): 2717-2725.
Cheetham NWH, Tao L. 1998. Solid state NMR studies on the structural and conformational properties of natural maize starches. Carbohydr Polym 36(4): 285-292.
Chun, Lim, Takeda, Shoki. 1997. Properties of high-crystalline rice amylodextrins prepared in acid-alcohol media as fat replacers. Cereal Foods Would 42(10): 813-819.
Eliasson AC. 1985. Retrogradation of starch as measured by differential scanning calorimetry. In Hill RD, Munck I, editors. New approaches to research on cereal carbohydrate. Amsterdam: Elsevier. p. 93-98.
Fishman ML, Rodriguez L, Chau HK. 1996. Molar masses and sizes of starches by high-performance size-exclusion chromatography with on-line multi- angle laser light scattering detection. J Agric Food Chem 44(10): 3182-3188.
Fox JD, Robyt JF. 1992. Modification of starch granules by hydrolysis with hydrochloric acid in various alcohols, and the formation of new kinds of limit dextrins. Carbohydr Res 227(1): 163-170.
Franco CML, Cabral RAF, Tavares DQ. 2002. Structural and physicochemical characteristics of Lintnerized native and sour cassava starches. Starch 54(10): 469-475.
Fredriksson H, Silverio J, Andersson R, Elliason AC, Åman P. 1998. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35(2): 119-134.
French D. 1972. Fine structure of starch and its relation to the organization of the granules. J Jpn Soc Starch Sci 19: 8-25.
Gallant DJ, Bouchet B, Baldwin PM. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32(2): 177-191.
Gerard C, Colonna P, Buleon A, Planchot V. 2002. Order in maize mutant starches revealed by mild acid hydrolysis. Carbohydr Polym 48(2): 131-141.
Gidley MJ, Bociek SM. 1985. Molecular organization in starches: A 13C CP/MAS NMR study. J Am Chem Soc 107(24): 7040-7044.
Hermansson AM, Svegmark K. 1996. Developments in the understanding of starch functionality. Trends Food Sci Technol 7(11): 345-353.
Hizukuri S. 1986. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147(2): 342-347.
Hoover R, Manuel H. 1996. The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J Cereal Sci 23(2): 153-162.
Hoover R, Vasanthan T. 1994. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydr Res 252(1): 33-53.
Hoover R. 2000. Acid-treated starches. Food Rev Int 16(3): 369-392.
Hoover R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starch: a review. Carbohydr Polym 45(3): 253-267.
Huber KC, BeMiller JN. 1997. Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chem 74(5): 537-41.
Huber KC, BeMiller JN. 2000. Channels of maize and sorghum starch granules. Carbohydr Polym 41(3): 269-276.
Ishii Y, Kawabata A, Nakamura M. 1994. Retrogradation specificities of amylopectins isolated from tropical starch using differential scanning calorimetry (DSC). J Appli Glycosci 41(3): 297-303.
Jacobs, Eerlingen, Rouseu, Colonna, Delcour. 1998. Acid hydrolysis of native and annealed wheat, potato and pea starches-DSC melting features and chain length distributions of lintneriaed starch. Carbohydrate Res 308(3/4): 359-371.
Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76(5): 629-637.
Jane J, Kasemsuwan T, Leas S, Zobel H, Robyt JF. 1994. Anthology of starch granule morphology by scanning electron microscopy. Starch 46(4): 121-129.
Jane J, Shen L, Wang L, Maningat CC. 1992. Preparation and properties of small-particle corn starch. Cereal Chem 69(3): 280-283.
Jane J, Wong K, McPherson AE. 1997. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res 300(3): 219-227.
Jayakody L, Hoover R. 2002. The effect of lintnerization on cereal starch granules. Food Res Int 35(7): 665-680.
Jenkins PJ, Donald AM. 1995. The influence of amylose on starch granule structure. Int J Biol Macromol 17(6): 315-321.
Jenkins PJ, Donald AM. 1997. The effect of acid hydrolysis on native starch granule structure. Starch 49(7/8): 262-267.
Juliano BO, Perez CM. 1990. Crystallinity of raw rice starch granules as indexed by corrosion with hydrochloric acid and amylase. Starch 42(2): 49-52.
Kainuma K, French D. 1971. Nageli amylodextrin and its relationship to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymer 10: 1673-1680.
Kalicevsky MT, Orford PD, Ring SG. 1990. The retrogradation and gelation of amylopectin from various botanical sources. Carbohydr Res 198(1): 49-55.
Kang KJ, Kim K, Lee SK, Kim SK. 1997. Relationship between molecular structure of acid-hydrolyzed rice starch and retrogradation. Korean J Food Sci Technol 29(5): 876-881.
Kasemsuwan T, Jane J. 1994. Location of amylose in normal starch granules. II. Locations of phosphodiester cross-linking revealed by phosphorus-31 nuclear magnetic resonance. Cereal Chem 71(3): 282-287.
Komiya T, Nara S. 1986. Changes in Crystallinity and gelatinization phenomena of potato starch by acid treatment. Starch 38(1): 9-13.
Komiya T, Yamada T, Nara S. 1987. Crystallinity of acid treated corn starch. Starch 39(9): 308-311.
Kong BW, Kim JI, Kim MJ, Kim JC. 2003. Porcine pancreatic α-amylase hydrolysis of native starch granules as a function of granules surface area. Biotechnol Prog 19(4): 1162-1166.
Lauro M, Ring SG, Bullt VJ, Poutanen K. 1997. Gelation of waxy barley starch hydrolysates. J Cereal Sci 26(3): 347-354.
Lawal OS. 2004. Composition, physicochemical properties and retrogradation characteristics of native, oxidized, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chem 87(2): 205-218.
Lehmann U, Rossler C, Schmiedl D, Jacobasch G. 2003. Production and physicochemical characterization of resistant starch type III derived from pea starch. Nahrung/Food 47(1): 60-63.
Li JH, Vasanthan T, Rossnagel B, Hoover R. 2001. Starch from hull-less barley: II. Thermal, rheological and acid hydrolysis characteristics. Food Chem 74(4): 407-415.
Li JY, Yeh AI. 2001. Relationships between thermal, rheological characteristics and swelling power for various starches. J Food Eng 50(3): 141-148.
Lim S, Jane J, Rajagopalan S, Seib PA. 1992. Effect of starch granule size on physical properties of starch-filled polyethylene film. Biotechnol Prog 8(1): 51-57.
Lin JH, Lii C-y, Chang JH. 2005. Chang of granular and molecular structures of waxy maize and potato starch after treated in alcohols with or without hydrochloric acid. Carbohydr Polym 59(4): 507-515.
Ma WP, Robyt JF. 1987. Preparation and characterization of soluble starches having different molecular sizes and composition, by acid hydrolysis in different alcohols. Carbohydr Res 166(2): 283-297.
MacPherson AE, Jane J. 2000. Extrusion of cross-linked hydroxypropylated maize starches II. Morphological and molecular characterization. Cereal Chem 77(3): 326-32.
Manelius R, Nurmi K, Bertoft E. 2000. Enzymatic and acidic hydrolysis of cationized waxy maize starch granules. Cereal Chem 77(3): 345-353.
Maningat CC, Juliano BO. 1979. Properties of Lintnerized starch granules from rices differing in amylose content and gelatinization temperature. Starch 31(1): 5-10.
Marchessault RH, Taylor MG, Fyfe CA, Veregin RP. 1985. Solid-state 13C-C.P.-M.A.S. N.M.R. of starches. Carbohydr Res 144(1): C1-C5.
McPherson AE, Jane J. 2000. Extrusion of cross-linked hydroxypropylated corn starches II. Morphological and molecular characterization. Cereal Chem 77(3): 326-332.
Miles MJ, Morris VJ, Orford PD, Ring SG. 1985. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res 135(2): 271-281.
Morrison WR, Tester RF, Gidley MJ, Karkalas JK. 1993. Resistance to acid hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerised waxy and non-waxy barley starches. Carbohydr Res 245(2): 289-302.
Mussulman WC, Wagoner JA. 1968. Electron microscopy of unmodified and acid-modified corn starches. Cereal Chem 45(): 162-171.
Nakazawa Y, Wang Y-J. 2003. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins. Carbohydr Res 338(24): 2871-2882.
Orford PD, Ring SG, Carroll V, Miles MJ, Morris VJ. 1987. The effect of concentration and botanical source on the gelation and retrogradation of starch. J Sci Food Agric 39(2): 169-177.
Paris M, Bizot H, Emery J, Buzaré JY, Buléon A. 1999. Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy 1: Spectral decomposition. Carbohydr Polym 39(4): 327-339.
Perera C, Lu Z, Sell J, Jane J. 2001. Comparison of physicochemical properties and structures of sugary-2 cornstarch with normal and waxy cultivars. Cereal Chem 78(3): 249-256.
Podzimek S. 1994. The use of GPC coupled with a multiangle laser light scattering photometer for the characterization of polymers. On the determination of molecular weight, size, and branching. J Applied Polymer Sci 54(1): 91-103.
Puchongkavarin H, Bergthaller W, Shobsngob S, Varavinit S. 2003. Characterization and utilization of acid-modified rice starch for use in pharmaceutical tablet compression. Starch 55(10): 464-475.
Ring SG, Colonna P, I’Anson KJ, Kalichvsky MT, Miles MJ, Morris VJ, Orford PD. 1987. The gelation and crystallization of amylopectin. Carbohydr Res 162(2): 277-293.
Robin JP, Mercier C, Charbonniere R, Guilbot A. 1974. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem 51(3): 389-406.
Robin P, Mercier C, Duprat F, Guilbot CA. 1975. Lintnerized starches. Chromatographic and enzymatic studies of insoluble residues from acid hydrolysis of various cereal starches, particularly waxy maize starch. Starch 27(2): 36-45.
Robyt JF, Choe JY, Hahn RS, Fuchs EB. 1996a. Acid-modification of starch granules in alcohols: effects of temperature, acid concentration, and starch concentration. Carbohydr Polym 281(2): 203-218.
Robyt JF, Choe JY, Fox JD, Hahn RS, Fuchs EB. 1996b. Acid modification of starch granules in alcohols: reactions in mixtures of two alcohols combined in different ratios. Carbohydr Res 283(1): 141-150.
Sanguanpong V, Chotineeranat S, Piyachomkwan K, Oates CG, Chinachoti P, Sriroth K. 2003. Preparation and structural properties of small-particle cassava starch. J Sci Food Agric 83(8): 760-768.
Sanguanpong V, Chotineeranat S, Piyachomkwan K, Oates CG, Chinachoti P, Sriroth K. 2003. Hydration and physicochemical properties of small-particle cassava starch. J Sci Food Agric 83(2): 123-132.
Shi YC, Capitani T, Trzasko P, Jeffcoat R. 1998. Molecular structure of a low amylopectin starch and other high amylose maize starches. J Cereal Sci 27(3): 289-299.
Shi Y-C, Seib PA. 1992. The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr Res 227(1): 131-145.
Shin S, Byun J, Park KH, Moon TW. 2004. Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal Chem 81(2): 194-198.
Sievert D, Würsch P. 1993. Amylose chain association based on differential scanning calorimetry. J Food Sci 58(6): 1332-1345.
Silverio J, Fredriksson H, Anderson R, Eliasson AC, Aman P. 2000. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit chain length distribution. Carbohydr Polym 42(2): 175-184.
Singh V, Ali SZ. 1987. Comparative acid modification of various starches. Starch 39(11): 402-405.
Singh V, Ali SZ. 2000. Acid degradation of starch. The effect of acid and starch type. Carbohydr Polym 41(2): 191-195.
Slade L, Levine H. 1987. Recent advances in starch retrogradation. In Stilva SS, Crescenzi V, Dea ICM, editors. Industrial polysaccharides. New York: Gordon and Breach. P 387-430.
Small JC. 1919. A method for the preparation of soluble starch. J Am Chem Soc 41(1): 113-120.
Suzuki A, Hizukuri S, Takeda Y. 1981. Physicochemical studies of kuzu starch. Cereal Chem 58(4): 286-290.
Suzuki A, Kaneyama M, shibanuma K, Takeda Y, Abe J, Hizukuri S. 1992. Characterization of lotus starch. Cereal Chem 69(3): 305-315.
Tatsumi H, Katano H. 2005. Kinetics of the surface hydrolysis of raw starch by glucoamylase. J Agric Food Chem 53(21): 8123-8127.
Tester RF, Debon SJJ, Sommerville MD. 2000. Annealing of maize starch. Carbohydr Polym 42(3): 287-299.
Tester RF, Morrison WR. 1990a. Swelling and gelatinisation of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chem 67(6): 551-557.
Tester RF, Morrison WR. 1990b. Swelling and gelatinisation of cereal starches. II. Waxy rice starches. Cereal Chem 67(6): 558-63.
Tester RF, Morrison WR. 1992. Swelling and gelatinisation of cereal starches. III. Some properties of waxy and normal non-waxy barley starches. Cereal Chemistry 69(6): 654-658.
van de Velde F, van Riel J, Tromp RH. 2002. Visualisation of starch granule morphologies using confocal scanning laser microscopy (CLSM). J Sci Food Agric 82(13): 1528-1536.
van Soest JJG, Benes K, de Wit D. 1995. The influence of acid hydrolysis of potato starch on the stress strain properties of the thermoplastic starch. Starch 47(11): 429-434.
Vasanthan T, Bhatty RS. 1996. Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chem 73(2): 199-207.
Vasanthan T, Hoover R. 1992. Effect of defatting on starch structure and physicochemical properties. Food Chem 45(5): 337-347.
Veregin RP, Fyfe CA, Marchessault RH, Taylor MG. 1986. Characterisation of the crystalline A and B starch polymorphs and investigation of starch crystallisation by high-resolution 13C CP/MAS NMR. Macromolecules 19(4): 1030-1034.
Wang L, Wang Y-J. 2001. Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch 53(11): 570-576.
Wischmann B, Adler-Nissen J. 2002. Melting properties and lintnerisation of potato starch with different degrees of phosphorylation. Starch 54(11): 499-507.
Wu H-CH, Sarko A. 1978a. The double-helical molecular structure of crystalline b-amylose. Carbohydr Res 61(1): 7-25.
Wu H-CH, Sarko A. 1978b. The double-helical molecular structure of crystalline a-amylose. Carbohydr Res 61(1): 27-40.
Wurzburg OB. 1987. Chapter 2: Converted starches. In: Wurzburg OB, editor. Modified starches: properties and uses. Boca Raton, FL: CRC press. p 17-40.
Yamaguchi M, Kainuma K, French D. 1979. Electron microscopic observations of waxy maize starch. J Ultrastruct Res 69(2): 249-261.
Yang CC, Lai HM, Lii CY. 1984. The modified alkaline steeping method for the isolation of rice starch. Food Sci (Taiwan) 11 (3/4): 158-162.
Yokoyama W, Renner-Nantz JJ, Shoemaker CF. 1998. Starch molecular mass and size by size-exclusion chromatography in DMSO-LiBr coupled with multiple laser light scattering. Cereal Chem 75(4): 530-535.
Zhang W, Jackson DS. 1992. Retrogradation behaviour of wheat starch gels with differing molecular profiles. J Food Sci 57(6): 1428-1432.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top