|
[1] N. N. Alexandrov and D. Fischer. Analysis of topological and nontopological structural similarities in the pdb: new examples with oldstructures. Proteins, 25:354-365, 1996. [2] P. J. Artymiuk, A. R. Poirrette, D. W. Rice, and P. Willett. A polymerase i palm in adenylyl cyclase? Nature, 388:33-34, 1997. [3] D. W. Barakat and P. M. Dean. Molecular structure matching by simulated annealing, iii. the incorporation of null correspondences into the matching problem. J. Comp. Aided Mol. Design., 5:107-117, 1991. [4] H. M. Berman, J.Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Res., 28:235{242, 2000. [5] F. C. Bernstein, T. F. Koetzle, Williams G. J. B., Meyer E. F. Jr., M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi. The protein data bank: A computer based archival file for macromolecular structure. J. Mol. Biol., 112:535-542, 1997. [6] S. H. Bryant, T. Madej, J. Janin, Y. Liu, A. Ruoho, G. Zhang, and Hurley J. H. A polymerase i palm in adenylyl cyclase? a reply. Nature,388:34, 1997. [7] J. M. Bujnicki. Phylogeny of the restriction endonuclease-like superfamily inferred from comparison of protein structures. J Mol Evol., 50:38-44,2000. [8] C. Chothia and A. M. Lesk. The relation between the divergence of sequence and structure in proteins. EMBO J., 5:823-826, 1986. [9] G. H. Cohen. Align: A program to superimpose protein coordinates,accounting for insertions and deletions. J. Appl. Crystallogr., In press.1997. [10] S. Cristobal, A. Zemla, D. Fischer, L. Rychlewski, and A. Elofsson. A study of quality measures for protein threading models. BMC Bioinformatics, 2:5, 2001. [11] V. De Filippis, C. Sander, and G. Vriend. Predicting local structural changes that result from point mutations. Protein Eng., 7:1203-1208,1994. [12] S. Dietmann and L. Holm. Identification of homology in protein structure classification. Nature Struct. Biol., 8:953-957, 2001. [13] A. Falicov and F. E. Cohen. A surface of minimum area metric for the structural comparison of proteins. J.Mol. Biol., 258:871-892, 1996. [14] D. Fischer, O. Bachar, R. Nussinov, and H. Wolfson. An efficient automated computer vision based technique for detection of three dimensional structural motifs in proteins. J Biomol Struct Dyn., 9:769-789.,1992. [15] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys, 18:1:23-38, 1986. [16] M. Gerstein and M. Levitt. Using iterative dynamic programming to obtain accurate pair-wise and multiple alignments of protein structures. In Proc. Fourth Int. Conf. on Intell. Sys. for Mol. Biol. Menlo Park,CA: AAAI Press, pp 59-67, 1996. [17] M. Gerstein and M. Levitt. Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Sci., 7:445-456, 1998. [18] J. F. Gibrat, T. Madej, and S. H. Bryant. Surprising similarities in structure comparison. Curr Opin Struct Biol., 6:377-385, 1996. [19] A. Godzik and J. Skolnick. Flexible algorithms for direct multiple alignment of protein structures and sequences. CABIOS, 10:587-596, 1994. [20] H. M. Grindley, P. J. Artymuik, D. W. Rice, and P. Willett. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol. Biol., 229:707-721,1993. [21] L. Holm and C. Sander. 3-d lookup: Fast protein structure database searches at 90% reliability. In Proc. Third Int. Conf. on Intell. Sys. for Mol. Biol. Menlo Park, CA: AAAI Press. pp 179-187, 1995. [22] L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices. J. Mol. Biol., 233:123-138, 1993a. [23] L. Holm and C. Sander. Structural alignment of globins, phycocyanins,and colicin. FEBS Lett., 315:301-306, 1993b. [24] L. Holm and C. Sander. The fssp database of structurally aligned protein fold families. Nucleic Acids Res.,22:3600-3609, 1994. [25] L. Holm and C. Sander. Mapping the protein universe. Science, 273:595-602, 1996a. [26] L. Holm and C. Sander. Alignment of three-dimensional protein structures: network server for database searching. Methods Enzymol.,266:653-662, 1996b. [27] L. Holm and C. Sander. Touring protein fold space with dali/fssp. Nucleic Acids Res., 26:316-319, 1998. [28] B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am., 4:629-642, 1987. [29] M. S. Johnson, M. J. Sutcli®e, and T. L. Blundell. Molecular anatomy:Phyletic relationships derived from three-dimensional structures of proteins. J Mol Evol., 30:43-59, 1990. [30] W. Kabsch. A solution for the best rotation to relate two sets of vectors.Acta. Cryst., A32:922-923, 1976. [31] Y. Lamdan and H. J. Wolfson. Geometric hashing: A general and efficient model based recognition scheme. In Proc. IEEE Int. Conf. on Computer Vision., pages 238-249, 1988. [32] R. H. Lathrop. The protein threading problem with sequence amino acid interaction preferences in np-complete. Protein Eng., 7:1059-1068,1994. [33] R. H. Lathrop and T. F. Smith. Global optimal protein threading with gapped alignment and empirical pair potentials. J. Mol. Biol., 255:641-665, 1996. [34] M. Levitt and M. Gerstein. A unified statistical framework for sequence comparison and structure comparison. Proc Natl Acad Sci U S A., 95:5913-5920., 1998. [35] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a database of protein cores. Proteins, 23:356-369, 1995. [36] A. C. R Martin.ttp://www.bioinf.org.uk/software/profit/. [37] A.D. McLachlan. Rapid comparison of protein structres. Acta Cryst,A38:871-873, 1982. [38] K. Mehlhorn and St. Naher. The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, 1999. [39] E. M. Mitchell, P. J. Artymiuk, D. W. Rice, and P. Willett. Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol., 212:151-166, 1989. [40] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: a structural classification of proteins database for the investigation of sequences and structures. J Mol. Biol., 247:536-540, 1995. [41] S. B. Needleman and C. D. Wunsch. A general method applicable to the seach for similarities in the amino acid sequence of two proteins. J.Mol. Biol., 48:443-453, 1970. [42] C. A. Orengo, D. T. Jones, and J. M. Thornton. Protein superfamilies and domain superfolds. Nature, 372:631-634, 1994. [43] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton. Cath - a hierarchical classi¯cation of protein domain structures. Structure, 5:1093-1108, 1997. [44] C. A. Orengo and W. R. Taylor. Ssap: Sequential structure alignment program for protein structure comparison. Methods Enzymol., 266:617-635, 1996. [45] S. T. Rao and Rossmann M. G. comparison of super-secondary structures in proteins. J. Molecular Biology, 76:241-256, 1973. [46] R. B. Russell and G. B. Barton. Multiple protein sequence alignment from tertiary structure comparisons: Assignment of global and residue confidence levels. Proteins, 14:309-323, 1992. [47] A. Sali and T. Blundel. Definition of general topological equivalence in protein structures: A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J. Mol. Biol., 212:403-428, 1990. [48] Y. Satow, G. H. Cohen, E. A. Padlan, and D. R. Davies. Phosphocholine binding immunoglobulin fab mcpc603: An x-ray diffraction study at 2.7 a. J. Mol. Biol., 190:593-604, 1987. [49] G. D. Schuler, J. A. Epstein, H. Ohkawa, and J. A. Kans. Entrez: Molecular biology database and retrieval system. Methods Enzymol., 266:141-162, 1996. [50] J. T. Schwartz and M. Sharir. Identi¯cation of partially obscured objects in two and three dimensions by matching noisy characteristic curves. Int. J. Robotics Research, 6:29-44, 1987. [51] I. N. Shindyalov and P. E. Bourne. Protein structure alignment by incremental combinatorial extension (ce) of the optimal path. Protein Eng., 11:739-747, 1998. [52] A. P. Singh and D. L. Brutlag. Hierarchical protein structure superposition using both secondary structure and atomic representations. In Proc. Fifth Int. Conf. on Intell. Sys. for Mol. Biol. Menlo Park, CA: AAAI Press. pp 284-293, 1997. [53] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195-197, 1970. [54] S. Subbiah, D. V. Laurents, and M. Levitt. Structural similarity of dnabinding domains of bacteriophage repressors and the globin core. Curr. Biol., 3:141-148, 1993. [55] W. Taylor and C. Orengo. Protein structure alignment. J. Mol. Biol., 208:1-22, 1989. [56] S. Umeyama. Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI,, 13:376-380, 1991. [57] G. Vriend and C. Sander. Detection of common 3-d substructures in proteins. Proteins, 11:52-58, 1991. [58] M. Zuker and R. L. Somorjai. The alignment of protein structures in three dimensions. Bull. Math. Biol., 51:55-78, 1989.
|