跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃珮雯
研究生(外文):Pei-wen Huang
論文名稱:由左至右片斷視窗非毗鄰型式
論文名稱(外文):Left-to-Right Fractional Window Non-Adjacent Form
指導教授:何煒華何煒華引用關係
指導教授(外文):Wei-Hua He
學位類別:碩士
校院名稱:東吳大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:27
中文關鍵詞:智慧卡旁通道攻擊片斷視窗
外文關鍵詞:smart cardside channel attacksfractional window
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出由左至右片斷視窗純量乘法運算方法,主要是考量智慧卡系統,在條件限制嚴苛的運作環境達到節省記憶體空間、提高運算效率與加強其安全性。預算點能隨記憶體空間進行調整,同時進行編碼與乘法運算,立即處理編碼後的位數,降低記憶空間的需求。此外,該編碼方法能防制旁通道攻擊法,有效提高智慧卡的安全性。
In this thesis, we propose a scalar multiplication operation method of left-to-right fractional window recoding applied to smart card systems. On strict environments, we can achieve memory space saving, efficient operation and security requirements. To reduce the memory requirement, the pre-computed points are adjusted to memory space. In addition, the recoding and multiplication operation are merged. We immediately deal with the recoding digits. The proposed recoding method can improve smart card security against side channel attacks.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 v
1. 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文架構 5
2. 相關研究 6
2.1 簡單電力分析防制方法 6
2.2 差異電力分析防制方法 8
2.3 由左至右編碼與其防制電力分析攻擊 10
3. 片斷視窗防制SCA 13
3.1 片斷視窗表示式 13
3.2 由左至右片斷視窗非毗鄰型式 13
3.3 安全分析 18
3.4 效能分析 20
4. 結論及未來展望 23
參考文獻 24
[1]Ahn, M.K., Ha, J.C., Lee, H.J. and Moon, S.J., “A random M-ary method based countermeasure against side channel attacks,” In Proceedings of ICCASA’03, Vol. 2668, pp. 338-347, 2003.
[2]Avanzi, R.M., “Countermeasures against differential power analysis for hyper elliptic curve cryptosystems,” Cryptographic Hardware and Embedded Systems, Vol. 2779, pp. 366-381, 2003.
[3]Bellezza, A., “Countermeasures against side-channel attacks for elliptic curve cryptosystems,” available at http://eprint.iacr.org/2001/103/2001.
[4]Booth, A.D., “A signed binary multiplication technique,” Quarterly Journal of Mechanics and Applied Mathematics, Vol. 4, No. 2, pp. 236-240, 1951.
[5]Bos, J. and Coster, M., “Addition chain heuristics,” Advances in Cryptology – CRYPTO’90, Vol. 435, pp. 400-407, 1990.
[6]Chevallier-Mames, B., Ciet, M. and Joye, M., “Low-cost solutions for preventing simple side-channel analysis: side-channel atomicity,” IEEE Transactions on Computers, Vol. 53, No 6, pp. 760-768, 2004.
[7]Cohen, H., Miyaji, A. and Ono, T., “Efficient elliptic curve exponentiation using mixed coordinates,” Advances in Cryptology – ASIACRYPT’98, Vol. 1514, pp. 51-65, 1998.
[8]Coron, J.S., “On boolean and arithmetic masking against differential power analysis,” Cryptographic Hardware and Embedded Systems, Vol. 1965, pp. 231-237, 2000.
[9]Coron, J.S., “Resistance against differential power analysis for elliptic curve cryptosystems,” Cryptographic Hardware and Embedded Systems, Vol. 1717, pp. 292-302, 1999.
[10]Ebeid, N. and Hasan, A., “On randomizing private keys to counteract DPA attacks,” 10th Annual International Workshop, Vol. 3006, pp. 58-72, 2003.
[11]Elena, T. and Antonio, B., “Implementation of elliptic curve cryptography with built-in counter measures against side channel attacks,” Cryptographic Hardware and Embedded Systems, Vol. 2523, pp. 98-113, 2002.
[12]Gollmann, D., Han Y. and Mitchell C., “Redundant integer representations and fast exponentiation,” Designs, Codes and Cryptography, Vol. 7, No. 1-2, pp. 135-151, 1996.
[13]Itoh, K., Izu, T. and Takenaka, M., “A practical countermeasure against address-bit differential power analysis,” Cryptographic Hardware and Embedded Systems, Vol. 2779, pp. 382-396, 2003.
[14]Itoh, K., Yajima, J., Takenaka, M. and Torii, N., “DPA countermeasures by improving the window method,” Cryptographic Hardware and Embedded Systems, Vol. 2523, pp. 303-317, 2002.
[15]Joye, M. and Tymen, C., “Protections against differential analysis for elliptic curve cryptography: an algebraic approach,” Cryptographic Hardware and Embedded Systems, Vol. 2162, pp. 377-390, 2001.
[16]Kocher, P., Jaffe, J. and Jun, B., “Differential power analysis,” Advances in Cryptology – CRYPTO’99, Vol. 1666, pp. 388-397, 1999.
[17]Kocher, P., Jaffe, J. and Jun, B., “Introduction to differential power analysis and related attacks,” available at http://www.cryptography.com/dpa/1998, 1998.
[18]Kog, C.K., “Analysis of sliding window techniques for exponentiation,” Computers and Mathematics with Applications, Vol. 30, No. 10, pp. 17-24, 1995.
[19]Möller, B., “Parallelizable elliptic curve point multiplication method with resistance against side-channel attacks,” 5th International Conference on Information Security, Vol. 2433, pp. 402-413, 2002.
[20]Möller, B., “Securing elliptic curve point multiplication against side-channel attacks,” 4th International Conference on Information Security, Vol. 2200, pp. 324-334, 2001.
[21]Möller, B., “Improved techniques for fast exponentiation,” Information Security and Cryptology, Vol. 2587, pp. 298-312, 2003.
[22]Möller, B., “Fractional windows revisited: improved signed-digit representations for efficient exponentiation,” Information Security and Cryptology, Vol. 356, pp. 137-153, 2005.
[23]Muir, J.A. and Stinson, D.R., “New minimal weight representations for Left-to-Right window methods,” available at http://www.cacr.math.uwaterloo.ca/tech_reports.html, 2004.
[24]Okeya, K. and Salurai, K., “Power analysis breaks elliptic curve cryptosystems even secure against the timing attack,” INDOCRYPT, pp. 178-190, 2000.
[25]Okeya, K. and Takagi, T., “A more flexible countermeasure against side channel attacks using window method,” Cryptographic Hardware and Embedded System, Vol. 2779, pp. 397-410, 2003.
[26]Okeya, K. and Takagi, T., “The width-w NAF method provides small memory and fast elliptic scalar multiplications secure against side channel attacks,” Topics in Cryptology -- CT-RSA’03, Vol. 2612, pp. 328-343, 2003.
[27]Okeya, K., Schmidt-Samoa, K., Spahn, C., and Takagi, T. “Signed binary representations revisited,” Advances in Cryptology – CRYPTO’04, Vol. 3152, pp. 123-139, 2004.
[28]Oswald, E. and Aigner, M., “Randomized addition-subtraction chains as a countermeasure against power attacks,” Cryptographic Hardware and Embedded Systems, Vol. 2162, pp. 39-50, 2001.
[29]Reitwiesner, G.W., “Binary arithmetic,” Advances in Computers, Vol. 1, pp. 231-308, 1960.
[30]Sakai, Y. and Sakurai, K., “A new attack with side channel leakage during exponent recoding computations,” Cryptographic Hardware and Embedded Systems, Vol. 3156, pp. 298-311, 2004.
[31]Thériault, N., “SPA resistant left-to-right integer recodings,” available at http://eprint.iacr.org/2005/125.pdf, 2005.
[32]Trichina, E. and Bellezza, A., “Implementation of elliptic curve cryptography with built-in counter measures against side channel attacks,” Cryptographic Hardware and Embedded Systems, Vol. 2523, pp. 98-113, 2002.
[33]曾文貴,官大智,「最新密碼學研究發展現況」,資通安全專輯之十九,財團法人國家實驗研究院科技政策研究與資訊中心,民國九十四年。
[34]邱榮輝 等,「硬體密碼模組之安全攻擊剖析」,資通安全專輯之十一,行政院國家科學委員會科學技術資料中心,民國九十二年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top