跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡泳安
研究生(外文):Yung-An Tsai
論文名稱:AZ31鎂合金板材非恆溫引伸成形性之研究
論文名稱(外文):A Study of Formability of Non-isothermal Deep Drawing of AZ31 Magnesium-Alloy Sheets
指導教授:黃庭彬
指導教授(外文):Tyng-Bin Huang
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:自動化及機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:85
中文關鍵詞:有限元素AZ31鎂合金非恆溫引伸極限引伸比脆性破壞延性破壞網際網路鎂合金替代性顯微鏡潤滑劑
外文關鍵詞:Finite elementAZ31 Magnesium alloyNon-isothermal deep drawingLimiting drawing ratiodesignBrittle fractureDuctile fracture
相關次數:
  • 被引用被引用:3
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:3
隨著全球通訊事業及網際網路的快速蓬勃發展,電子產品對輕薄短小、可攜式與耐衝擊的產品設備之需求大增。傳統工程等材料性能已漸不敷所需,因此鎂合金替代性材料成為引人注意的發展方向。但鎂合金結晶構造為六方最密堆積,在常溫時塑性變形能力低,不易變形,因此必須升高溫度,以產生新的變形機制,才能進行塑性成形。
本研究以圓筒引伸實驗及有限元素分析探討AZ31鎂合金非恆溫引伸之成形性,主要探討的成形參數包括成形溫度、潤滑劑及板材厚度。由實驗與模擬結果得知厚度0.58mm 的AZ31板材,最高極限引伸比是成形溫度在260℃時,使用二硫化鉬為潤滑劑,LDR為2.63。厚度0.5mm 的AZ31板材,成形溫度在200℃時,使用二硫化鉬為潤滑劑,LDR可達2.63。比較有限元素模擬與實驗結果相當接近,因此可以在製作模具前先以有限元素模擬,可降低模具開發之成本。在掃描式電子顯微鏡觀察下,胚料在成形溫度100℃時之破裂形態屬於脆性破壞,在150℃以上開始逐漸轉為延性破壞。
本論文之研究成果不僅可提供日後相關學術研究之參考,亦可作工業界開發相關產品之技術資料。
With the vigorous growing of global communication and internet, the demands of products that are light, thin, portable and impact-resistant is greatly increased. Traditional engineering plastics cannot meet all the demand, so magnesium alloy becomes the good substitute material. However the formability of magnesium is low at room temperature because of the hexagonal closed packed (HCP) crystal structure. Forming above room temperature is required to active the slip mechanism along pyramidal plane.
In this study the formability at elevated temperature of magnesium alloy AZ31B sheets are studied by circular cup drawing experiments and finite element analysis. The process parameters forming temperature, lubricant and sheet thickness are investigated. The experiment and simulation results indicate that the highest limit drawing ratio (LDR) is at forming temperature 260℃ with molybdenum disulfide as lubricant for 0.58 mm thick AZ31B sheet, and the highest LDR is 2.63. The highest LDR is at forming temperature 200℃ with molybdenum disulfide as lubricant for 0.50 mm thick AZ31B sheet, and the highest LDR is 2.63. The simulated results show good agreement with experiments. The die design cost can be lowered by finite element simulation. The fracture mode of the formed sheet observed by scanning electron microscope is brittle fracture at forming temperature 100℃, and it turns to ductile fracture gradually as the forming temperature higher than 150℃.
The results of this study can be used as referenced resources not only for the related academic research but also for the development of related products in industry.
論文目錄
中文摘要................................................................. Ⅰ
英文摘要................................................................. Ⅱ
誌謝..................................................................... Ⅲ
目錄..................................................................... Ⅳ
圖目錄................................................................... Ⅶ
表目錄.................................................................. XⅢ

第一章 緒論............................................................... 1
1-1 前言................................................................ 1
1-2 研究動機與目的...................................................... 1
1-3 文獻回顧............................................................ 2
1-4 研究方法與步驟...................................................... 5
1-5 論文總覽............................................................ 6

第二章 鎂合金材料與產品製程............................................... 8
2-1 鎂合金材料.......................................................... 8
2-1-1 鎂金屬之來源.................................................... 8
2-1-2 鎂合金之晶體結構................................................ 9
2-1-3 鎂合金之分類規範及意義......................................... 12
2-1-4 鎂合金之特性及其應用........................................... 12
2-2 鎂合金產品製程..................................................... 16
2-2-1 鎂合金壓鑄製程................................................. 16
2-2-2 鎂合金半固態製程............................................... 17
2-2-3 鎂合金塑性加工製程............................................. 20
第三章 非恆溫引伸成形模具與實驗方法...................................... 22
3-1 非恆溫圓筒引伸實驗................................................. 22
3-1-1 圓筒引伸與極限引伸比........................................... 22
3-1-2 實驗設備....................................................... 23
3-1-3 非恆溫引伸模具之設計........................................... 28
3-2 實驗方法........................................................... 31
3-2-1 非恆溫引伸實驗參數及流程....................................... 31
3-2-2 金相實驗....................................................... 34
3-2-3 .SEM破斷面觀察................................................. 34
3-2-4 微硬度實驗..................................................... 35
3-2-5 厚度量測....................................................... 35

第四章 非恆溫引伸之有限元素法分析........................................ 36
4-1 非恆溫圓筒引伸模擬模型之建立....................................... 36
4-2 材料參數之定義..................................................... 38
4-3 邊界條件之定義..................................................... 39

第五章 結果與討論........................................................ 40
5-1 極限引伸比......................................................... 40
5-1-1 極限引伸比與板材厚度之關係..................................... 42
5-1-2 極限引伸比與潤滑劑之關係....................................... 43
5-2 沖頭引伸力......................................................... 44
5-2-1 引伸力與板材尺寸之關係......................................... 44
5-2-2 引伸力與板材厚度之關係......................................... 47
5-2-3 引伸力與成形溫度之關係......................................... 50
5-2-4 引伸力與潤滑劑之關係........................................... 51
5-2-5 引伸力與壓料力之關係........................................... 53
5-2-6 引伸力與板材極限強度........................................... 54
5-3 圓筒厚度分佈....................................................... 55
5-3-1 圓筒成形之厚度分佈............................................. 55
5-3-2 圓筒成形之破裂位置............................................. 57
5-4 溫度變化........................................................... 58
5-4-1 圓筒引伸成形之溫度分佈......................................... 58
5-4-2 圓筒引伸成形之溫度變化......................................... 65
5-5 金相組織分析....................................................... 67
5-6 圓筒硬度分佈....................................................... 76
5-7 破斷面之微觀組織................................................... 77

第六章 結論與未來方向.................................................... 79
6-1 結論............................................................... 79
6-2 未來方向........................................................... 80

參考文獻................................................................. 81

作者簡介................................................................. 86







圖目錄
圖1.1 研究步驟............................................................ 6
圖2.1 鎂合金晶體結構......................................................10
圖2.2 .HCP滑移系..........................................................10
圖2.3 鎂單晶底面滑移與非底面滑移之關係圖..................................11
圖2.4 鎂單晶非底面滑移之剪斷應力與剪斷應變................................11
圖2.5 鎂合金應用領域......................................................13
圖2.6 四種金屬半固態製程之流程比較........................................19
圖2.7 觸變成形示意圖......................................................20
圖2.8 流變成形設備及製程示意圖............................................20
圖3.1 圓筒引伸示意圖......................................................23
圖3.2 非恆溫引伸實驗系統..................................................25
圖3.3 .HA-500萬能材料試驗機............................................... 25
圖3.4 引伸模具............................................................26
圖3.5 .PID溫度控制器......................................................26
圖3.6 冰水機............................................................. 27
圖3.7 電阻尺............................................................. 27
圖3.8 電腦程式記錄介面....................................................28
圖3.9 模具組合示意圖......................................................28
圖3.10 加熱板與加熱管構造.................................................29
圖3.11 循環冷却沖頭示意圖.................................................30
圖3.12 循環冷却沖頭.......................................................31
圖3.13 引伸實驗流程圖.....................................................33
圖3.14 表面熱電偶粘貼位置.................................................34
圖3.15 .JEOL JSM-5610掃描式電子顯微鏡..................................... 35
圖3.16 外徑測微器.........................................................35
圖4.1 模具尺寸............................................................37
圖4.2 模型網格............................................................37
圖4.3 鎂合金之真應力-真應變曲線...........................................38
圖4.4 鎂合金之楊氏模數....................................................38
圖5.1 實驗與模擬於各成溫度之LDR(潤滑劑二硫化鉬,板材厚度0.58mm)..........41
圖5.2 實驗與模擬於各成溫度之LDR(潤滑劑5號壓板油,板材厚度0.58mm).. ......41
圖5.3 板材厚度0.58mm,二硫化鉬為潤滑劑,各成形溫度之LDR圓筒...............41
圖5.4 板材厚度0.58mm,5號壓板油為潤滑劑,各成形溫度之LDR圓筒..............41
圖5.5 板材厚度0.5mm,二硫化鉬為潤滑劑,各成形溫度之LDR圓筒................42
圖5.6 板材厚度0.5mm,5號壓板油為潤滑劑,各成形溫度之LDR圓筒...............42
圖5.7 不同板材厚度之LDR(潤滑劑二硫化鉬)..................................43
圖5.8 不同板材厚度之LDR(潤滑劑5號壓板油).................................43
圖5.9 不同潤滑劑之LDR(板材厚度0.58mm)...................................44
圖5.10 不同潤滑劑之LDR(板材厚度0.5mm)...................................44
圖5.11 引伸力與板材尺寸之關係(厚度0.58mm,溫度230℃,潤滑劑
5號壓板油)........................................................45
圖5.12 引伸力與板材尺寸之關係(厚度0.58mm,溫度150℃,潤滑劑
5號壓板油)........................................................45
圖5.13 引伸力與板材尺寸之關係(厚度0.58mm,溫度200℃,潤滑劑
5號壓板油)........................................................46
圖5.14 引伸力與板材尺寸之關係(厚度0.58mm,溫度260℃,潤滑劑
5壓板油)..........................................................46
圖5.15 引伸力與板材尺寸之關係(厚度0.58mm,溫度300℃,潤滑劑
5壓板油)..........................................................46
圖5.16 實驗與模擬不同板材尺寸之引伸力(厚度0.58mm,溫度150℃,潤滑劑
5號壓板油)........................................................46
圖5.17 實驗與模擬不同板材尺寸之引伸力(厚度0.58mm,溫度230℃,潤滑劑
5號壓板油)........................................................47
圖5.18 實驗與模擬不同板材尺寸之引伸力(厚度0.58mm,溫度260℃,潤滑劑
5號壓板油)........................................................47
圖5.19 實驗與模擬不同板材尺寸之引伸力(厚度0.58mm,溫度300℃,潤滑劑
5號壓板油)........................................................47
圖5.20 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度150℃,
胚料直徑55mm)....................................................48
圖5.21 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度200℃,
胚料直徑70mm)....................................................48
圖5.22 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度230℃,
胚料直徑80mm)....................................................48
圖5.23 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度260℃,
胚料直徑55mm)....................................................48
圖5.24 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度260℃,
胚料直徑60mm)....................................................49
圖5.25 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度260℃,
胚料直徑65mm)....................................................49
圖5.26 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度260℃,
胚料直徑70mm)....................................................49
圖5.27 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度260℃,
胚料直徑75mm)....................................................49
圖5.28 實驗與模擬不同板材厚度之引伸力(潤滑劑5號壓板油,溫度300℃,
胚料直徑70mm)....................................................50
圖5.29 實驗與模擬不同溫度之引伸力(厚度0.58mm,潤滑劑5號壓板油,
胚料直徑55mm)....................................................50
圖5.30 實驗與模擬不同溫度之引伸力(厚度0.58mm,潤滑劑5號壓板油,
胚料直徑60mm)....................................................50
圖5.31 實驗與模擬不同溫度之引伸力(厚度0.58mm,潤滑劑5號壓板油,
胚料直徑70mm)....................................................51
圖5.32 實驗與模擬不同溫度之引伸力(厚度0.58mm,潤滑劑5號壓板油,
胚料直徑80mm)....................................................51
圖5.33 實驗與模擬不同溫度之引伸力(厚度0.58mm,潤滑劑5號壓板油,
胚料直徑85mm)....................................................51
圖5.34 引伸力與潤滑劑之關係(溫度150℃,胚料直徑55mm,厚度0.58mm)..........52
圖5.35 引伸力與潤滑劑之關係(溫度200℃,胚料直徑70mm,厚度0.58mm)..........52
圖5.36 引伸力與潤滑劑之關係(溫度230℃,胚料直徑85mm,厚度0.58mm)..........53
圖5.37 引伸力與潤滑劑之關係(溫度260℃,胚料直徑90mm,厚度0.58mm)..........53
圖5.38 引伸力與潤滑劑之關係(溫度300℃,胚料直徑85mm,厚度0.58mm)..........53
圖5.39 引伸力與壓料力之關係...............................................54
圖5.40 實驗與模擬不同壓料力之引伸力.......................................54
圖5.41 .0.58mm板材之極限強度............................................. 55
圖5.42 實驗與模擬之板材厚度分佈(成形溫度100℃)...........................56
圖5.43 實驗與模擬之板材厚度分佈(成形溫度150℃)............................56
圖5.44 實驗與模擬之板材厚度分佈(成形溫度200℃)............................56
圖5.45 實驗與模擬之板材厚度分佈(成形溫度230℃)............................56
圖5.46 實驗與模擬之板材厚度分佈(成形溫度260℃)............................56
圖5.47 實驗與模擬之板材厚度分佈(成形溫度300℃)............................56
圖5.48 實驗與模擬之板材破裂位置(成形溫度200℃)............................57
圖5.49 實驗與模擬之板材破裂位置(成形溫度230℃)............................57
圖5.50 實驗與模擬之板材破裂位置(成形溫度260℃)............................57
圖5.51 實驗與模擬之板材破裂位置(成形溫度300℃)............................57
圖5.52 成形溫度100℃圓筒之溫度分佈........................................59
圖5.53 成形溫度150℃圓筒之溫度分佈........................................60
圖5.54 成形溫度200℃圓筒之溫度分佈........................................61
圖5.55 成形溫度230℃圓筒之溫度分佈........................................62
圖5.56 成形溫度260℃圓筒之溫度分佈........................................63
圖5.57 成形溫度300℃圓筒之溫度分佈........................................64
圖5.58 成形溫度150℃之溫度變化............................................65
圖5.59 成形溫度200℃之溫度變化............................................66
圖5.60 成形溫度230℃之溫度變化............................................66
圖5.61 成形溫度260℃之溫度變化............................................66
圖5.62 成形溫度300℃之溫度變化............................................67
圖5.63 厚度0.58mm之板材,引伸前之組織.....................................69
圖5.64 厚度0.5mm之板材,引伸前之組織......................................69
圖5.65 成形溫度150℃時之溫度與等效塑性應變量分佈..........................70
圖5.66 成形溫度150℃之組織................................................70
圖5.67 成形溫度200℃時之溫度與等效塑性應變量分佈..........................71
圖5.68 成形溫度200℃之組織................................................71
圖5.69 成形溫度260℃時之溫度與等效塑性應變量分佈..........................73
圖5.70 成形溫度260℃之組織................................................73
圖5.71 成形溫度300℃時之溫度與等效塑性應變量分佈..........................74
圖5.72 成形溫度300℃之組織................................................75
圖5.73 150℃之圓筒硬度分佈................................................ 77
圖5.74 200℃之圓筒硬度分佈................................................ 77
圖5.75 260℃之圓筒硬度分佈................................................ 77
圖5.76 300℃之圓筒硬度分佈................................................ 77
圖5.77 成形溫度100℃之破斷面..............................................78
圖5.78 成形溫度150℃之破斷面..............................................78
圖5.79 成形溫度200℃之破斷面..............................................78
圖5.80 成形溫度260℃之破斷面..............................................78






















表目錄
表2-1 .FCC與HCP晶體結構..................................................10
表2-2 鎂合金之ASTM標準代號定義.........................................14
表2-3 鎂合金主要應用產品及其要求特性..................................... 15
表3-1 圓筒引伸實驗條件................................................... 32
表4-1 模擬參數........................................................... 39
表4-2 各成形溫度之沖頭溫度設定值.........................................39
[1.] 張志坤,黃庭彬,陳復國,“鎂合金AZ31 板材之沖壓製程”,工業材料雜誌,186期,91 年6 月,pp. 99-105。
[2.] B.L. Mordike,T. Ebert,“Magnesium Properties - applications - potential”,Materials Science and Engineering,,A302 (2001),pp.37-45.
[3.] I. J. Polmear, “Introduction: History,Production,Applications and Markets”,Magnesium and Magnesium Alloys,ed. by Michael M.Avedesian and Hugh Baker,ASM Specialty Handbook,(1999),pp.3 - 6.
[4.] I. J. Polmear, “Magnesium Alloys and Applications”, Mater. Sci. Technol.,Vol. 10(1), (1994),pp. 1-16.
[5.] Y. C. Lee, A. K. Dahle and D. H. StJohn, “The Role of Solute in Grain Refinement of Magnesium”, Metallurgical and Materials Transactions A,Vol. 31A,(2000),pp. 2895 - 2906.
[6.] 游瑞坤,“鎂合金簡介”,技術與訓練,27卷,4期,91 年8 月,pp. 86-97。
[7.] 劉建宏,“鎂合金”,產業調查與技術,141期,91 年4 月,pp. 26-38。
[8.] 邱垂泓,楊智超,“鎂合金成型技術之發展趨勢”,工業材料雜誌,174期,90 年6 月,pp. 84-88。
[9.] 楊智超,“鎂合金壓鑄成型技術”,工業材料雜誌,147期,88 年3 月,pp. 157-164。
[10.] 楊智超,“鎂合金材料特性及新製程發展”,工業材料雜誌,152期,88 年8 月,pp. 72-80。
[11.] 邱垂泓,“金屬半固態製程技術簡介”,工業材料雜誌,164期,89 年8 月,pp. 158-160。
[12.] 林文樹,黃文星,吳春甫,“AZ91D壓鑄鎂合金之熱間鍛造性及手機外殼混合成形之應用研究”,鍛造雜誌,11卷,3期,2002 年10 月,pp. 4-22。
[13.] K.K.S. Tong,B.H. Hu,X.P. Niu,I. Pinwill,“Cavity Pressure Measurements and Process Monitoring for Magnesium Die Casting of a Thin-wall Hand-phone Component to Improve Quality”,Journal of Materials Processing Technology,Vol. 127 (2002),pp.238–241.
[14.] 邱先拿,“鎂合金鍛造成形加工技術”,鍛造雜誌,10卷,2期,2001 年6 月,pp. 25-35。
[15.] 伏和中,高永洲,王凱弘,“鎂合金鍛造技術”,鍛造,9卷,1期,89 年3 月,pp. 24-36。
[16.] 陳信吉,陳復國,“AZ系鎂合金沖鍛成形之研究”,工業材料雜誌,198期,2003 年6 月,pp.126-132。
[17.] 王凱弘,“鎂合金行動電話外殼沖鍛技術應用”,鍛造雜誌,10卷,4期,2001 年12月,pp.35-39。
[18.] 王建義,“鎂合金板材之壓形加工”,工業材料雜誌,170期,90 年2 月,pp. 132-136。
[19.] S. Lee,Y.H. Chen,J.Y. Wang,“Isothermal Sheet Formability of Magnesium Alloy AZ31 and AZ61”,Journal of Materials Processing Technology,Vol. 124 (2002),pp.19–24.
[20.] 陳信宏,“鎂合金薄板沖壓成形之研究”,台灣大學機械工程學研究所碩士論文,91年6月。
[21.] 黃庭彬,“鎂合金與不銹鋼板材溫間成形特性之研究”台灣大學機械工程學研究所博士論文,92 年7 月。
[22.] H. Palaniswamy,G. Ngaile and T. Altan,“ Finite Element Simulation of Magnesium Alloy Sheet Forming at Elevated Temperatures”,Journal of Materials Processing Technology,Vol. 146 (2004),pp. 52–60.
[23.] S. Yoshihara,B.J. MacDonald,H. Nishimura,H. Yamamoto,K. Manabe,“Optimisation of Magnesium Alloy Stamping with Local Heating and Cooling Using the Finite Element Method”,Journal of Materials Processing Technology,Vol.153–154 (2004),pp.319–322.
[24.] S. Yoshihara,H. Nishimura,H. Yamamoto,K. Manabe,“Formability Enhancement in Magnesium Alloy Stamping Using a Local Heating and Cooling Technique: Circular Cup Deep Drawing Process”,Journal of Materials Processing Technology,Vol. 142 (2003),pp.609–613.
[25.] F.K. Chen,T.B. Huang,,C.K. Chang,“Deep Drawing of Square Cups with Magnesium Alloy AZ31 Sheets”,International Journal of Machine Tools & Manufacture,Vol. 43 (2003), pp.1553–1559.
[26.] F.K. Chen,T.B. Huang,“Formability of Stamping Magnesium-alloy AZ31 Sheets”,Journal of Materials Processing Technology, Vol.142 (2003), pp.643–647.
[27.] E. Doege and K. Droder, “Sheet Metal Forming of Magnesium Wrought Alloys-Formability and Process Technology”,Journal of Materials Processing Technology,Vol. 115(2001),pp. 14-19.
[28.] O. Tetsuro, S. Sho-ichi,K. Masao and I. Satoshi, “Formability of AZ31 Magnesium Alloy Sheets under Warm Working Conditions”,Journal of the JSTP., Vol.42, No. 482(2001),pp. 246-248.
[29.] H. Somekawa,M. Kohzu,S. Tanabe and K. Higashi,“The Press Formability in Magnesium Alloy AZ31”, Materials Science Forum,,Vol. 350-351(2000),pp. 177-182.
[30.] 黃志豪,“常溫及溫間引伸加工問題之有限元素分析”,國立中央大學機械工程研究所碩士論文, 92 年6 月。
[31.] R. H. Wagoner,S. Latreille,J.L. Siles and Yong H. Kim,“Nonisothermal Punch Stretching: Measurements and Finite Element Modeling Simulations”,Metallurgical Transactions,Vol. 22A(1991),pp. 3003-3011.
[32.] T. Naka,F. Yoshida,“Deep Drawability of Type 5083 Aluminium-Magmesium Alloy Sheet under Various Conditions of Temperature and Forming Speed”,J. Mater. Proc. Technology,Vol. 89-90(1999),pp.19-23.
[33.] J. S. Chang and S. S. Chou,“Effect of Temperature Gradient in a Blank on the Microstructure of Type 304 Stainless Steel in Square-Shaped Deep Drawing”,Metallurgical Transaction,Vol.37,No.4 (1996),pp. 586-594.
[34.] K. Shinagawa,K. I. Mori and K. Osakada,“Finite Element Simulation of Deep Drawing of Stainless Steel Sheet with Deformation-Induced Transformation”,Journal of Material Processing Technology,Vol.27(1991),pp. 301-310.
[35.] C. P. Livitsanos and P. F. Thomson,“The Effect of Temperature and Deformation Rate on Transformation-Dependent Ductility of a Metastable Austenitic Steel”,Materials Science and Engineering,Vol. 30(1977),pp. 93-98.
[36.] H. Takuda, K. Mori,I. Masuda,Y. Abe and M. Matsuo,“Finite Element Simulation of Warm Deep Drawing of Aluminium Alloy Sheet when Accounting for Heat Conduction”,Journal of Material Technology,Vol. 120(2002),pp. 412-418.
[37.] H. Takuda,T. Yoshii and N. Hatta,“Finite-Element Analysis of the Formability of a Magnesium-Based Alloy AZ31 Sheet”,Journal of Materials Processing Technology,Vol. 89-90(1999),pp. 135-140.
[38.] E. Doege and G. Kurz,“ Development of a Formulation to Describe the Work Softening Behaviour of Magnesium Sheets for Heated Deep Drawing Process ”,Annals of the CIRP,Vol. 50(2001),pp. 177-180.
[39.] H. Takuda, H. Fujimoto and H. Hatta, “Modelling on Flow Stress of Mg-Al-Zn Alloys at Elevated Temperatures”,Journal of Materials Processing Technology,Vol. 80-81(1998),pp. 513-516.
[40.] H. Takuda,T. Enami,K. Kutoba and H. Hatta,“The Formability of a Thin Sheet of Mg-8.5Li-1Zn Alloy”,Journal of Materials Processing Technology,Vol. 101(2000),pp. 281-286.
[41.] J. Kaneko,M. Sugamata,M. Numa,Y. Nishikawa and H. Takada,“Effect of Texture on the Mechanical Properties and Formability of Magnesium Wrought Materials”,Journal of JILM,Vol.64,No.2(2000),pp.141-147.
[42.] A. Mwebela,E.B. Konopleva and H.J. Mcqueen,“Microstructoral Development in Mg Alloy AZ31 During Hot Working”,Scripta Materialia,Vol.37,No.11(1997),pp.1789-1795.
[43.] I. Takano,H. Ohnuki,M. Kobayashi,“Deep-drawability of cup on AZ31 Magnesium Alloy Plate”,Journal of Japen Institute of light Metals,Vol.50,No.9 (2000),pp.456-461.
[44.] Z. Zimniak,“Implementation of the Forming Limit Stress Diagram in FEM Simulations”,Journal of Materials Processing Technology,Vol.106(2000),pp.261~266.
[45.] Li-Ping Lei,Sang-Moon Hwang and Beom-Soo Kang,“Finite Element Analysis and Design in Stainless Steel Sheet Forming and its Experimental Comparison”,Journal of Materials Processing Technology,Vol.110(2001),pp.70~77.
[46.] T.C. Chang,J.Y. Wang,C.M. O,S. Lee,“Grain Refining of Magnesium Alloy AZ31 by Rolling”,Journal of Materials Processing Technology,Vol.140 (2003),pp.588–591.
[47.] P. Klimanek,and A. Potzsch,“Microstructure Evolution Compressive Plastic Deformation of Magnesium at Different Temperatures and Strain Rate”,Materials Science & Engineering,Vol.324(2002),pp.145-150.
[48.] M. R. Barnett,“Influence of Deformation Conditions and Texture on the High Temperature Flow Stress of Magnesium AZ31”,Journal of Light Metals,Vol.1(2001),pp.167-177.
[49.] H. Watanabe,T. Mukai,M. Sugioka,K. Ishikawa,“Elastic and Damping Properties from Room Temperature to 673 K in an AZ31 Magnesium alloy”,Scripta Materialia,Vol.51(2004),pp.291-295.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top