跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王祥雲
研究生(外文):WANG, HSIANG-YUN
論文名稱:兩個微生物反應槽串聯之穩定狀態和動態分析
論文名稱(外文):An Analysis of the Steady States and Dynamics of Two Continuous Cultures in Series
指導教授:林浩林浩引用關係
指導教授(外文):LIN HAO
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:180
中文關鍵詞:動態分析微生物反應槽穩定度數值分析
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
近年來由於環保觀念之重要性及生物廢棄物之處理技術深受大家重視,故微生物的混合培養技術成為相當重要的研究主題。
本研究實施菌類-基質(Cell-Substrate)和被捕食者-捕食者(Prey-Predator)相互作用之生化反應在兩個微生物反應槽串聯之穩定狀態和動態分析,對於菌類-基質之生化反應,若以Substrate Inhibition模式來表示菌類之比生長速率,則此兩個微生物反應槽串聯之反應系統共有三種型態之穩定狀態,本研究對此三種型態之穩定狀態和穩定度作深入的分析,對於此反應系統之動態行為,則由電腦運用數值分析的方法及電腦繪圖進行分析工作,動態分析的結果顯示此生化反應系統之動態行為,以穩定之穩態(Stable Steady State)為主。
對於被捕食者-捕食者相互作用之生化反應,其中之ㄧ種微生物(捕食者)可由捕食另一種微生物(被捕食者)而獲得養分。若以Substrate Inhibition模式來表示被捕食者之比生長速率,而以Monod模式來表示捕食者之比生長速率,則此兩個微生物反應槽串聯之反應系統共有六種型態之穩定狀態,本研究對此六種型態之穩定狀態和穩定度作深入的分析。對於動態分析,本研究運用數值分析的方法來求解系統之動態方程式,並運用電腦繪圖來進行動態分析,動態分析的結果顯示此生化反應系統之動態行為可為穩定之穩態(Stable Steady State)或循環振盪(Limit Cycle)。
ABSTRACT
Because the concept of the importance of the environmental protection and the techniques of the biochemical waste treatment have received more attention in recent years, the cultivation of the microorganism has become an important research subject.
A study is conducted to analyze the steady states and dynamic behavior of the reactions of the cell-substrate and the prey-predator interaction in two continuous cultures in series. For the reaction of cell-substrate in two continuous cultures in series, if the specific growth rate of the Substrate-Inhibition model is used for cell, there are three types of steady states for this reaction system. These three types of steady states and stability are analyzed in detail. The dynamic behavior of this reaction system is analyzed by the numerical method and computer graphs. The results show that the dynamic behavior of this system consists of stable steady states.
For the prey-predator interaction, a common interaction between two organisms inhabiting the same environments involves one organism (predator) deriving its nourishment by capturing and ingesting the other organism (prey). If the specific growth rates of Substrate Inhibition model and Monod model are used for the prey and predator respectively, there are six types of steady states for the two continuous cultures in series reaction system and the six types of steady states and stability are analyzed in detail in this research. The dynamic equations of this system are solved by the numerical method and the dynamic analysis is performed by the computer graphs. The results show that the dynamic behavior of this system consists of stable steady states and limit cycles.
目 次
摘要...………………………………………………………………………………..…...iv
英文摘要.............................................................................................................................v
誌謝....................................................................................................................................vi
目次....….………………………………………………………………………………..vii
表目錄..............................................................................................................................ix
圖目錄.................................................................................................................................x
第一章 前言...……………………………………………………………..……………1
1.1 研究背景及目的……….……………………………………….….…….……1
1.2 研究方法…………………………………………………………...……..……2
1.3 目前完成之工作項目及成果……………………………………...…………..3
第二章 菌類-基質在兩個微生物反應槽串聯之穩定狀態和動態分析..........……….4
2.1 動態系統方程式..……………………………………………………..………4
2.2 穩定狀態..……………………………………………………………..………6
2.3 穩定度分析……………………………………………………………....……8
2.4 動態分析…………………………………………………..…………………16
2.5 討論………………………………………………………..………….……...30
第三章 被捕食者-捕食者在兩個微生物反應槽串聯之穩定狀態和動態分析….....31
3.1 動態系統方程式…………………………………………..………………....31
3.2 穩定狀態…………………………………………………..………………....33
3.3 穩定度分析………………………………………………..………………....38
3.4 動態分析…………………………………………………..………………....56
3.5 討論................................................................................................................135
第四章 結論....................................................................................................................137
參考文獻…….……………………………………………………………...…..……....139
附錄 A 菌類—基質在兩個微生物反應槽串聯之質量平衡.......................................142
附錄 B Substrate Inhibition模式之說明.....................................................................144
附錄C 計算機程式計算菌類—基質在兩個微生物反應槽串聯之第一個微生物反應槽之動態.........................................................................................................145
附錄D 計算機程式計算菌類—基質在兩個微生物反應槽串聯之第二個微生物反應
槽之動態.........................................................................................................147
附錄 E 計算機程式計算菌類—基質在兩個微生物反應槽串聯之穩定狀態........149
附錄 F 計算機程式計算菌類—基質在兩個微生物反應槽串聯之特徵值............151
附錄G 被捕食者-捕食者在兩個微生物反應槽串聯之質量平衡...........................152
附錄 H 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之第一個微生
物反應槽之動態...............................................................................................154
附錄 I 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之第二個微生
物反應槽之動態...............................................................................................157
附錄 J 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之第一、二型態
之穩定狀態.......................................................................................................160
附錄 K 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之第三型態之
穩定狀態...........................................................................................................162
附錄 L 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之第四型態之
穩定狀態...........................................................................................................166
附錄 M 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之第五型態之
穩定狀態...........................................................................................................168
附錄 N 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之第六型態之
穩定狀態...........................................................................................................174
附錄 O 計算機程式計算被捕食者—捕食者在兩個微生物反應槽串聯之特徵值...179
參考文獻
1. Andrews, J.F., “A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substrates”, Biotechnol. and Bioeng., Vol. X, pp.707-723, 1968.
2. Canale, R.P., “Predator-Prey Relationships in a Model for the Activated Process”, Biotechnol. and Bioeng., Vol.11, pp.887-907, 1969.
3. Canale, R.P., “An Analysis of Models Describing Predator-Prey Interaction”, Biotechnol. and Bioeng., Vol.12, pp.353-378, 1970.
4. Tsuchiya, H.M., Drake, J.F., Jost, J.L., and Fredrickson, A.G., “Predator-Prey Interactions of Dictyostelium discoideum and Escherichia coli in Continuous Culture”, J.of Bacteriology., Vol.110, No.3, pp.1147-1153, 1972.
5. Jost, J.L., Drake, J.F., Tsuchiya, H.M., and Fredrickson, A.G., “Microbial Food Chains and Food Webs”, J. Theor. Biol ., Vol.41, pp.461-484, 1973.
6. Canale, R.P., Lustig, T.D., Kehrberger, P.M. and Salo, J.E., “Experimental and Mathematical Modeling Studies of Protozoan Predation on Bacteria”, Biotechnol. and Bioeng., Vol.15, pp.707-728, 1973.
7. May, R. M., “Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos”, Science, Vol.186, pp.645-647, 1974.
8. May, R. M., “Biological Populations Obeying Difference Equations: Stable Points, Stable Cycles, and Chaos” , J. Theor. Biol., Vol.51, pp. 511-524, 1975.
9. Saunders, P.T., and Bazin, M.J., “On the Stability of Food Chains”, J. Theor. Biol., Vol.52, pp.121-142, 1975.
10. Sudo, R., Kobayashi, K., and Aiba, S., “Some Experiments and Analysis of a Predator-Prey Model:Interaction between Colpidum campylum and Alcaligenes faecalis in Continuous and Mixed Culture” , Biotechnol. and Bioeng., Vol.17, pp.167-184, 1975.
11. May, R. M., “Simple Mathematical Models with Very Complicated Dynamics”, Nature, Vol.261, pp. 459-467, 1976.
12. Olsen, L. F. and Degn, H., “Chaos in an Enzyme Reaction”, Nature, Vol.267, pp.177-178, 1977.
13. Schmitz, R. A., Graziani, K. R. and Hudson, J. L., “Experimental Evidence of Chaotic States in the Belousov-Zhabotinskii Reaction” , J. Chem. Phys., Vol.67, pp.3040-3044, 1977.
14. Sheintuch, M., “Dynamics of Commensalistic System with Self- and Cross– Inhibition”, Biotechnol. and Bioeng., Vol.22, pp.2557-2577, 1980.
15. Hastings, A., “Multiple Limit Cycles in Predator-Prey Models”, J. Math. Biol., Vol.11, pp.51-63, 1981.
16. Decroly, O., and Goldbeter, A., “Birhythmicity, Chaos, and Other Patterns of Temporal Self-Organization in a Multiply Regulated Biochemical System” , Proc. Natl. Acad. Sci. U.S.A., Vol.79, pp.6917-6921, 1982.
17. Agrawal, P., Lee, C., Lim, H. C., and Ramkrishna, D., “Theoretical Investigations
of Dynamic Behavior of Isothermal Continuous Stirred Tank Biological Reactors” , Chem. Eng. Sci., Vol.37, pp.453-462, 1982.
18. Butler, G.J., Hsu, S.B., and Waltman, P., “Coexistence of Competing Predators in a Chemostat”, J. Math. Biol., Vo1.17, pp.133-151, 1983.
19. Keener, J.P., “Oscillatory Coexistence in a Food Chain Model with Competing Predators”, J. Math. Biol., Vol.22, pp.123-135, 1985.
20. Pavlou, S., “Dynamics of a Chemostat in Which One Microbial Population Feeds on Another”, Biotechnol. and Bioeng., Vol.27, pp.1525-1532, 1985.
21. Bailey, J.E. and Ollis, D.F. , “Biochemical Engineering Fundamentals“ , McGraw-Hill Book Company, Second Edition, pp.384, 1986.
22. Mihail, R. and Straja, S., “An Analysis of the Steady States of a Chemostat with Applications to Its Design”, Biotechnol. and Bioeng., Vol.31, pp.87-90, 1988.
23. Ivanitskaya, J.G., Petrikevich, S.B. and Bazykin, A.D., “Oscillations in Continuous Cultures of Microorganisms:Criteria of Utility of Mathematical Models” , Biotechnol. and Bioeng., Vol.33, pp.1162-1166, 1989.
24. Weber, A.E., and San, K-Y., “Population Dynamics of a Recombinant Culture in a Chemostat under Prolonged Cultivation”, Biotechnol. and Bioeng., Vol.36, pp.727-736, 1990.
25. Kiss, R.D., and Stephanopoulos, G., “Culture Instability of Auxotrophic Amino Acid Producers”, Biotechnol. and Bioeng., Vol.40, pp.75-85, 1992.
26. Lenas, P., and Pavlou, S., “Coexistence of Three Competing Microbial Populations in a Chemostat with Periodically Varying Dilution Rate”, Mathematical Biosciences, Vol.27, pp.615-642, 1995.
27. Sheintuch, M., Tartakovsky, B., Narkis, N. and Rebhun, M., “Substrate Inhibition and Multiple States in a Continuous Nitrification Process”, Wat. Res, Vol.29, pp.953-963, 1995.
28. Ajbar, A., and Ibrahim, G., “Periodic and Nonperiodic Oscillatory Behavior in a Model for Activated Sludeg Reactors”, Mathl. Comput. Modelling., Vol.25, pp.9-27, 1997
29. Xiu, Z-L, Zeng A-P, and Deckwer, W-D, “Model Analysis Concerning the Effects of Growth Rate and Intracellular Tryptophan Level on the Stability and Dynamics of Tryptophan Biosynthesis in Bacteria” , J. of Biotechnology, Vol.58, pp.125-140, 1997.
30. Ajbar, A., and Ibrahim, G., “Stability and Bifurcation of an Unstructured Model of a Bioreactor with Cell Recycle”, Mathl. Comput. Modelling., Vol.25, No.2, pp.31-48, 1997.
31. Xiu, Z-L, Zeng A-P, and Deckwer, W-D, “Multiplicity and Stability Analysis of Microorganisms in Continuous Culture:Effects of Metabolic Overflow and Growth Inhibition” , Biotechnol. and Bioeng., Vol.57, pp.251-261, 1998.
32. Wang, J., Liu, P., Shi, H. and Qian, Y., “Kinetics of Biodegradation of Di-N-butyl Phthalate in Continuous Culture System”, Chemosphere, Vol.37, pp.257-264, 1998.
33. Jones, K.D., and Kompala, D.S., “Cybernetic Model of the Growth Dynamics of Saccharomyces Cerevisiae in Batch and Continuous Cultures”, J. of Biotechnology, Vol.71, pp.105-131, 1999.
34. Ajbar, A., and Alhumaizi, K., “Biodegradation of Substitutable Substrates in a Continuous Bioreactor with Cell Recycle: A Study of Static Bifurcation”, Mathl. Comput. Modelling., Vol.31, pp.159-174, 2000.
35. Ajbar, A., “Stability Analysis of the Biodegradation of Mixed Wastes in a Continuous Bioreactor with Cell Recycle ”, Wat. Res., Vol.35, No.5, pp.1201-1208, 2001.
36. Ajbar, A., “On the Existence of Oscillatory Behavior in Unstructured Models of Bioreactors”,Chemical Engineering Science., Vol.56, pp.1991-1997, 2001.
37. Ajbar, A., “Classification of Static and Dynamic Behavior in Chemostat for Plasmid-Bearing, Plasmid-Free Mixed Recombinant Cultures”, Chem. Eng. Comm., Vol.189, pp.1130-1154, 2002.
38. Kim, H., and Pagilla, K.R., “Competitive Growth of Gordonia and Acinetobacter in Continuous Flow Aerobic and Anaerobic/Aerobic Reactors”, J. of Bioscience and Bioeng., Vol.95, No.6, pp.577-582, 2003.
39. Hwang, Tzy-Wei., “Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response”, J. Math. Anal. Appl., Vol.290, pp.113-122, 2004.
40. Aggelis, G., Vayenas, D.V., Tsagou, V. and Pavlou, S., “Prey-Predator Dynamics with Predator Switching Regulated by a Catabolic Repression Control Mode”, Ecological Modelling, Vol.183, pp.451-462, 2005.
41. Upadhyay, R.K., Iyengar, S.R.K., “Effect of Seasonality on the Dynamics of 2 and 3 Species Prey-Predator Systems”, Nonlinear Analysis: Real World Applications, Vol.6, pp.509-530, 2005.
42. Gakkhar, S., Singh, B., “Dynamics of Modified Leslie–Gower-Type Prey-Predator Model with Seasonally Varying Parameters”, Chaos, Solitons and Fractals, Vol.27, pp.1239-1255, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top