跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖國翔
研究生(外文):liao kuo hsiang
論文名稱:以含釕黃血鹽修飾碳糊電極應用於電流式過氧化氫感測器及葡萄糖生醫感測器之研究
論文名稱(外文):A Study of the Carbon Paste Electrode Modified With Ruthenium Hexacyanoferrate(Ⅱ)and Its Applications to the Amperometric Hydrogen Peroxide Sensors and Glucose Biosensors
指導教授:李錦厚林浩林浩引用關係
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:含釕黃血鹽碳糊電極電流式感測器
相關次數:
  • 被引用被引用:3
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:3
摘要
近年來,糖尿病已為國人十大死亡原因之一,所以簡便快速之葡萄糖生醫感測器成為重要之研究主題。現今之食品工業有時會添加過氧化氫作為防腐劑,因此過氧化氫感測器亦為重要之研究主題。葡萄糖和氧氣受葡萄糖氧化酵素催化,將葡萄糖氧化成葡萄糖酸並將氧氣還原成過氧化氫,即利用電極表面於固定之還原電位下釋出電子,將電子傳媒(Mediator)變成還原態,再藉由電子傳媒之還原態釋出電子催化還原過氧化氫成水,而電子傳媒由還原態變成氧化態,利用所得之電流信號之大小,即可計算出過氧化氫的含量,進而推算葡萄糖之濃度,故過氧化氫之偵測技術為一重要的研究主題。由於含釕黃血鹽修飾碳糊電極偵測過氧化氫之靈敏度比釕紫佳,故本研究主要利用含釕黃血鹽來修飾碳糊電極,而含釕黃血鹽本身具有強催化性能,與具有導電性能的碳粉製作成碳糊電極可藉以提升過氧化氫之應答電流。在30℃下,以含釕黃血鹽修飾碳糊電極[含釕黃血鹽:碳粉=3:7(重量比)]操作電位為-200 mV ,攪拌速率為600 rpm,以0.05 M 磷酸鹽緩衝溶液(pH=7.4)偵測過氧化氫之應答電流,可得偵測極限為0.02 mM H2O2,線性範圍為 0.02~2.7 mM H2O2,R2為0.9996,靈敏度為661.8 µA/cm2.mM H2O2,而未經修飾之碳糊電極靈敏度為31.3 µA/cm2.mM H2O2,由此結果可知含釕黃血鹽偵測過氧化氫具有極佳之靈敏度。由以上結果以最適掺混比例之碳糊電極,將葡萄糖氧化酵素塗佈於電極表面,再以Nafion加以固定可製得葡萄糖感測電極。其偵測極限為0.02 mM C6H12O6,線性範圍為0.02~2.56 mM C6H12O6,R2為0.999,靈敏度為4.11 µA/cm2.mM C6H12O6。
在過氧化氫網版印刷電極部分,其偵測極限為0.02 mM H2O2,線性範圍為0.02~0.96 mM H2O2,R2為0.917,靈敏度為 28.77 µA/cm2.mM H2O2,葡萄糖網版印刷電極的偵測極限為 0.02 mM C6H12O6,線性範圍為 0.02~2.24 mM C6H12O6,R2 值為0.9983,靈敏度為12.19 μA/cm2ּmM C6H12O6。
ABSTRACT
In recent years, diabetes has become one of the top ten causes of death for people in our country. Therefore, a rapid and convenient glucose biosensor becomes an important research subject. Nowadays, sometimes the preservatives are used in the food industry for the purpose of food preservation. Therefore, a hydrogen peroxide sensor also becomes an important research subject. The glucose and oxygen can be catalyzed by the glucose oxidase and the glucose is oxidized to gluconic acid and the oxygen is reduced to hydrogen peroxide. The electrode releases the electrons at the reductive potential and converts the mediator to the reductive state. Then the mediator at the reductive state releases the electrons to reduce the hydrogen peroxide to water and consequently the mediator at the reductive state is converted to the oxidizing state. The responding current for detecting the hydrogen peroxide is used to measure the amount of hydrogen peroxide and consequently determine the concentration of the glucose. Therefore, the detecting technique for the hydrogen peroxide is an important research subject. Because the sensitivity of carbon paste electrodes modified with the ruthenium hexacyanoferrate(Ⅱ) was better than that of the carbon paste electrodes modified with the ruthenium purple, the ruthenium hexacyanoferrate(Ⅱ) was used to modify the carbon paste in this research. As the ruthenium hexacyanoferrate(Ⅱ) possesses the excellent catalytic characteristic and the graphite carbon powder possesses the high conductivity, a study was conducted to use the ruthenium hexacyanoferrate(Ⅱ) to modify the carbon paste electrode and the responding current for detecting the hydrogen peroxide could then be elevated. At 30℃, -200 mV operating potential, 600 rpm stirring rate and in 0.05 M PBS buffer solution(pH=7.4), when the carbon paste electrode was modified with the ruthenium hexacyanoferrate(Ⅱ)[ruthenium hexacyanoferrate(Ⅱ):graphite carbon powder=3:7 ( weight ratio)], the detection limit was 0.02 mM H2O2, the linear range was 0.02~2.7 mM H2O2, R2=0.9996, and the sensitivity was 661.8 µA/cm2.mM H2O2. The sensitivity for the unmodified carbon paste electrodes was 31.3 µA/cm2.mM H2O2. The results showed that the carbon paste electrode modified with the ruthenium hexacyanoferrate(Ⅱ) possessed the excellent sensitivity for detecting the hydrogen peroxide.
The most suitable mixing ratio of ruthenium hexacyanoferrate(Ⅱ) to graphite carbon powder obtained from the above mentioned results could be further applied to fabricate the glucose biosensor by using the glucose oxidase which was immobilized by the Nafion on the surface of electrode.The detection limit was 0.02 mM C6H12O6 , the linear range was 0.02~2.56 mM C6H12O6 (R2=0.999), and the sensitivity was 4.11 µA/cm2.mM C6H12O6.
For the hydrogen peroxide screen printed planar sensor, the detection limit was 0.02 mM H2O2, the linear range was 0.02~0.96 mM H2O2 (R2=0.917), and the sensitivity was 28.77 µA/cm2.mM H2O2. For the glucose screen printed planar sensor, the detection limit was 0.02 mM C6H12O6 , the linear range was 0.02~2.24 mM C6H12O6 (R2=0.9983), and the sensitivity was 12.19 µA/cm2.mM C6H12O6.
目 次
摘要…………………………………………………………………………………...iv
英文摘要………………………………………………………………………………v
誌謝…………………………………………………………………………………...vi
目次…………………………………………………………………………………..vii
表目錄………………………………………………………………………………....x
圖目錄………………………………………………………………………………..xi
第一章 緒論…………………………………………………………………………..1
1.1 研究動機與目的……………………………………………………………1
1.2 生醫感測器及文獻回顧……………………………………………………2
1.2.1生物辨識元件……………………………………………….…………3
1.2.2電子信號傳感器………………………...……………………………..6
1.2.3 電流式生醫感測器偵測生理物質之原理…………………………..10
1.3 電化學原理………………….…………………………………………….11
1.4 電化學測定方法…………………………………………………………..13
1.4.1 電化學測定方法的優點……………………………………………..13
1.4.2 循環伏安法( Cyclic Voltammetry, CV ) …………………………….13
1.4.3 定電位法( Constant-Potential Method ) …………………………….16
1.5 電子傳媒…………………………………………………………………..17
1.5.1 普魯士藍與類普魯士藍……………………………………………..18
1.6 粉體製備技術……………………………………………………………..19
1.6.1固相法...................................................................................................19
1.6.2 氣相法..................................................................................................19
1.6.3 液相法..................................................................................................20
1.6.4 共沉法………………………………………………………………..21
1.7 過氧化氫之用途………………………………………………………….21
1.8 葡萄氧化酵素之用途…………………………………………………….22
1.9 固定辨識元件目的及方法……………………………………………….23
1.10 Nafion 之用途…………………………………………………………...24

第二章 實驗部份…………………………………………………………………..27
2.1 試劑與儀器………………………………………………………………..27
2.1.1 實驗試劑…………………………………………………………….27
2.1.2 實驗儀器…………………………………………………………….28
2.2 實驗溶液配置及藥品基本特性…………………………………………..31
2.2.1 三氯化鐵水溶液…………………………………………………….31
2.2.2 釕(Ⅱ)氰化鉀水溶液…………………………………………………31
2.2.3 三氯化釕水溶液…………………………………………………….32
2.2.4 黃血鹽水溶液……………………………………………………….32
2.2.5 1 M氫氧化鈉..................................................................…………..32
2.2.6 1 M鹽酸……………………………………………………………33
2.2.7 磷酸鹽緩衝溶液(PBS)……………………………………………33
2.2.8 過氧化氫溶液(100 mM)…………………………………………33
2.2.9 葡萄糖溶液(100 mM)……………………………………………34
2.2.10 葡萄糖氧化酵素溶液…………….………………………………..34
2.2.11 Nafion 酒精溶液…………………………………………………34
2.3 釕紫和含釕黃血鹽(電子傳媒)之合成………………………………….35
2.3.1 釕紫之合成………………………………………………………….35
2.3.2 含釕黃血鹽之合成………………………………………………….35
2.4 電極之製備………………………………………………………………..35
2.4.1 工作電極材料之前處理……………………………………………..35
2.4.2 碳糊電極之製備……………………………………………………..36
2.4.3 酵素電極之製備……………………………………………………..37
2.4.4 網版印刷電極之製備………………………………………………..37
2.5 過氧化氫之檢測……………………………………………………….....40
2.5.1 操作電位試驗………………………………………………………40
2.5.2 碳糊電極之最適組成試驗…………………………………………41
2.5.3 緩衝溶液之最適pH值試驗……………………………………….41
2.5.4 系統中之攪拌速率試驗……………………………………………42
2.5.5 碳漿添加量之探討…………………………………………………42
2.5.6 最適條件下偵測過氧化氫之偵測極限及線性範圍………………42
第三章 結果與討論…………………………………………………………………44
3.1 釕紫修飾之碳糊電極偵測過氧化氫之應答電流……………………….44
3.2 含釕黃血鹽修飾之碳糊電極偵測過氧化氫之應答電流……………….47
3.2.1 碳糊之最適組成……………………………………………………47
3.2.2 最適操作電位………………………………………………………54
3.2.3 緩衝溶液之最適 pH 值…………………………………………...60
3.2.4 最適攪拌速率………………………………………………………65
3.2.5 碳漿添加量之探討…………………………………………………70
3.3 最適條件下碳糊電極偵測過氧化氫之偵測極限及線性範圍…………...75
3.4 酵素碳糊電極對葡萄糖之感測結果……………………………………...80
3.4.1 以Nafion 固定葡萄糖氧化酵素於碳糊電極上偵測葡萄糖之偵測
極限與線性範圍測試………………………………………………80
3.5 最適條件下網版印刷電極之性能測試…………………………………...83
3.5.1 最適條件下網版印刷電極偵測過氧化氫之偵測極限及
線性範圍……………………………………………………………83
3.5.2 以 Nafion 固定葡萄糖氧化酵素於網版印刷電極上偵測葡萄糖之
偵測極限與線性範圍測試…………………………………………86
第四章 結論…………………………………………………………………………89
參考文獻……………………………………………………………..………………91

















表目錄
表 3.1 不同含量的含釕黃血鹽修飾之碳糊電極偵測過氧化氫之靈敏度與R2比較
表......................................................................................................................53
表 3.2 不同操作電位下之碳糊電極偵測過氧化氫之靈敏度與R2比較
表......................................................................................................................59
表 3.3 碳糊電極在不同pH值之PBS緩衝溶液中偵測過氧化氫之靈敏度與R2
比較表………………………………………………………………………..64
表 3.4 不同攪拌速率下之碳糊電極偵測過氧化氫之靈敏度與R2比較
表……………………………………………………………………………..69
表 3.5 不同碳漿、含釕黃血鹽粉末及碳粉之重量比之碳糊電極偵測過氧化氫之靈敏度與R2之比較表...................................................................................74
表 3.6 經含釕黃血鹽修飾與未經修飾之碳糊電極偵測過氧化氫的偵測極限、線性範圍、靈敏度與R2之比較表……………………………………………79














圖目錄
圖 1.1 電流式生醫感測器偵測葡萄糖之原理………………………………….…11
圖 1.2 對流、擴散、泳動(電荷遷移)時物質的傳輸狀態…………………….….12
圖 1.3 循環伏安法的示意圖…………………………………………………….…15
圖 1.4 循環伏安法之電位掃瞄與相對應之電流……………………………….…15
圖 1.5 循環伏安圖之電位掃瞄與相對應之電流……………………………….…16
圖 1.6 Nafion之化學結構式……………………………………………………...25
圖 1.7 Nafion薄膜之微結構圖…………………………………………………...26
圖 2.1 三電極系統……………………………………….…………………………29
圖 2.2 網版印刷機.....................................................................................................30
圖 2.3 網版………………………………………………………………………….31
圖 2.4 所選用之單芯銅電線尺寸示意圖…………………………………….……36
圖 2.5 碳糊電極製作流程示意圖………………………………………….………36
圖 2.6 碳糊電極示意圖.............................................................................................37
圖 2.7 酵素電極示意圖…………………………………………………………….37
圖 2.8 網版示意圖………………………………………………………………….38
圖 2.9 網版加入碳糊示意圖……………………………………………………….38
圖 2.10 網版固定在印刷機上印刷過程示意圖…………………………………...39
圖2.11 網版印刷電極尺寸示意圖…………………………………………………39
圖 2.12 網印酵素電極的製作方法………………………………………………...40
圖 3.1 經釕紫修飾與未經修飾的碳糊電極之CV圖……………………………..45
圖 3.2 經釕紫修飾與未經修飾的碳糊電極之TB圖……………………………..46
圖 3.3 經含釕黃血鹽修飾之碳糊電極與未經修飾的碳糊電極之 CV
圖……………………………………………………………………………..49
圖 3.4 不同比例之含釕黃血鹽及碳粉的碳糊電極偵測過氧化氫之應答電流之
TB圖……………………………………………………………………….50


圖 3.5 不同比例之含釕黃血鹽的碳糊電極偵測過氧化氫之應答電流之比較
圖………………………………………………………………………..........51
圖 3.6 不同比例之含釕黃血鹽及碳粉的碳糊電極偵測過氧化氫之應答電流之
檢量線的比較圖…………………………………………………………..52
圖 3.7 含釕黃血鹽粉末與碳粉之比例為 3:7 製成碳糊工作電極的 CV
圖……………………………………………………………………………..55
圖 3.8 不同操作電位下之碳糊電極偵測過氧化氫之應答電流之TB
圖…………………………………………………………………………….56
圖3.9 不同操作電位下之碳糊電極偵測過氧化氫之應答電流之比較圖……………………………………………………………………………57
圖 3.10 不同操作電位下之碳糊電極偵測過氧化氫之應答電流之檢量線的比
較圖…………………………………………………………………………58
圖 3.11 碳糊電極在不同pH值之PBS緩衝溶液中偵測過氧化氫
之應答電流之TB圖…..................…………………………………………61
圖 3.12 碳糊電極在不同pH值之PBS緩衝溶液中偵測過氧化氫之應答電流
之比較圖........................................................................................................62
圖 3.13 碳糊電極在不同pH值之PBS緩衝溶液中偵測過氧化氫之應答電流
之檢量線的比較圖…....................................................................................63
圖 3.14 不同攪拌速率下之碳糊電極偵測過氧化氫之應答電流之TB
圖……………………………………………………………………………66
圖 3.15 不同攪拌速率下之碳糊電極偵測過氧化氫之應答電流之比較
圖……………………………………………………………………………67
圖 3.16 不同攪拌速率下之碳糊電極偵測過氧化氫之應答電流之檢量線的比較圖………………………………………………………………………….68
圖 3.17 分別以碳漿、含釕黃血鹽粉末及碳粉之重量比為(A) 1 : 0.3 : 0.7 (B) 2: 0.3 : 0.7 (C) 3 : 0.3 : 0.7 的碳糊電極偵測過氧化氫之應答電流之TB圖…………………………………………………………. ……………...71
圖 3.18不同碳漿對 (含釕黃血鹽粉末加碳粉) 之重量比的碳糊電極偵測過氧化氫之應答電流之比較圖………………………………………………….72

圖 3.19 分別以碳漿、含釕黃血鹽粉末及碳粉之重量比為(A) 1 : 0.3 : 0.7 (B) 2: 0.3 : 0.7 (C) 3 : 0.3 : 0.7 的碳糊電極偵測過氧化氫之應答電流之檢量線的比較圖………………………………………..…...................................73
圖 3.20 偵測過氧化氫濃度之偵測極限的 TB 之比較圖:(A) 含釕黃血鹽與碳粉掺混比例為3:7之碳糊電極,攪拌速率為600 rpm (B) 含釕黃血鹽與碳粉掺混比例為3:7之碳糊電極,攪拌速率為500 rpm (C) 未經修飾的碳糊電極,攪拌速率為600 rpm……………………………………………76
圖 3.21 偵測過氧化氫的檢量線及TB 之比較圖:(A) 含釕黃血鹽與碳粉掺混比例為3:7之碳糊電極,攪拌速率為600 rpm (B) 含釕黃血鹽與碳粉掺混比例為3:7之碳糊電極,攪拌速率為500 rpm (C) 未經修飾的碳糊電極,攪拌速率為600 rpm………………………………………………………77
圖 3.22 檢量線之比較圖:(A) 為含釕黃血鹽與碳粉掺混比例3:7之碳糊電極,攪拌速率為600 rpm (B) 含釕黃血鹽與碳粉掺混比例3:7之碳糊電極,攪拌速率為500 rpm (C) 未經修飾的碳糊電極,攪拌速率為 600 rpm……………………………………………………………………78
圖3.23 葡萄糖碳糊電極測試偵測極限的 TB 圖………………………………...81
圖3.24 葡萄糖碳糊電極測試檢量線及 TB 圖…………………………………...82
圖3.25 過氧化氫網版印刷電極測試偵測極限的TB圖………………………….84
圖3.26 過氧化氫網版印刷電極測試檢量線及TB圖…………………………….85
圖3.27 葡萄糖網版印刷電極之偵測極限的 TB 圖……………………………...87
圖3.28 葡萄糖網版印刷電極之線性範圍的 TB 圖……………………………...88
參考文獻
1.Cataldi, Tommaso R.I., Benedetto, Giuseppe. E. De., “On the ability of ruthenium to stabilize polynuclear hexacyanometallate film electrodes,” Journal of Electroanalytical Chemistry, Vol.458, pp.149 – 154, 1998.
2. Clark, L. C., and Lyons, C., “Electrode system for continuous monitoring in
cardiovascular surgery,” Annals New York Academy of Sciences, Vol.102, pp.29-45, 1962.
3. Updike, S. J., and Hicks, G. P., “The Enzyme Electrode,” Nature, Vol.214, pp. 986-988, 1967.
4. Katakis, I., Domínguez, E., “Characterization and stabilization of enzyme biosensors,” Trends in Analytical Chemistry, Vol.14, pp.310-319, 1995.
5. Liu, H., Ying, T., Sun, K., Li, H., Qi, D., “Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode,” Analytica Chimica Acta, Vol.344, pp.187-199, 1997.
6. Liu, X., Wei, J., Song, D., Zhang, Z., Zhang, H., Luo, G., “Determination of affinities and antigenic epitopes of bovine cardiac troponin I (cTnI) with monoclonal antibodies by surface plasmon resonance biosensor,” Analytical Biochemistry, Vol.314, pp.301-309, 2003.
7. Babacan, S., Pivarnik, P., Letcher, S., Rand, A.G., “Evaluation of antibody immobilization methods for piezoelectric biosensor application,” Biosensors and Bioelectronics, Vol.15, pp.615 – 621, 2000.
8. Sezgintürk, M. K., Dinçkaya, E., “A novel amperometric biosensor based on spinach (Spinacia oleracea) tissue homogenate for urinary oxalate determination,” Talanta, Vol.59, pp.545 – 551, 2003.
9. Akyilmaz, E., Dinckaya, E., “A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum,” Talanta, Vol.53, pp.505 – 509, 2000.
10. Hashimoto, K., Ito, K., Ishimori, Y., “Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye,” Anal. Chem., Vol.66, pp.3830-3833, 1994.
11. Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M., Dontha, N., “DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus, ” Anal. Chem., Vol.68, pp.2629-2634, 1996.

12. Prabhakar, Nanduri R., Overholt, Jeffrey L., “Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels,” Respiration Physiology, Vol.122, pp.209 – 221, 2000
13. Victoria., et. al., “Induction of brain glucose uptake by a factor secreted into cerebrospinal fluid,” Brain Research, Vol.994, pp.124-133, 2003.
14. Jung, S. K., Wilson, G. S., “Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors,” Anal. Chem., Vol.68, pp.591-596, 1996.
15. Kumar, S. D., Kulkarni, A. V., Kalyanraman, R., Krish-namorthy, T. S., “Whole blood glucose determination using glucose oxidase immobilized on cotton cheese cloth,” Analytica Chimica Acta, Vol.338, pp.135-140, 1997.
16. Liu, H., Ying, T., Sun, K., Li, H., Qi, D., “Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode,” Analytica Chimica Acta, Vol.344, pp.187-199, 1997.
17. Uang, Y.-M., Chou, T.-C., “Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions,” Biosensors and Bioelectronics, Vol.19, pp.141-147, 2003.
18. Uang, Y.-M., Chou, T.-C., “Criteria for designing a polypyrrole glucose biosensor by galvanostatic electropolymerization , ” Electroanalysis, Vol.14, No.22, pp.1564-1570, 2002.
19. De Bendetto, G. E., Palmisano, F., Zambonin, P. G., “One-step fabrication of a bienzyme glucose sensor based on glucose oxidase and peroxidase immobilized onto a poly(pyrrole) modified glassy carbon electrode,” Biosensors and Bioelectronics, Vol.11, No10, pp.1001-1008, 1996.
20. Singh, S., Chaubey, A., Malhotra, B. D., “Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films,” Analytica Chimica Acta, Vol.502, pp.229-234, 2004.
21. Towe, C. B., and Guilbeau, J. E., “A vibrating probe thermal biochemical sensor,” Biosensors and Bioelectronics, Vol.11, pp.247-252. , 1996.
22. Bin, X., Kumaran, R.,and Bengt, D., “Mini/micro thermal biosensors and other
related devices for biochemical/clinical analysis and monitoring,” Trends in
Analytical Chemistry, Vol.19, pp.340-349, 2000.
23. Bjarni, B., Peter, J., and Gillis, J., “A novel thermal biosensor: evaluation for
determination of urea in serum,” Analytica Chimica Acta, Vol.372, pp.341-348, 1998.

24. Tran, M. C., and Vallin, D., “Enzyme-bound thermistor as enthalpimetric sensor,” Anal. Chem., Vol.50, pp.1874-1878, 1978.
25. 田蔚城,”生物技術”,九州圖書文物有限公司, pp. 247-262.
26. 陳旭群,”尿素感測器之研製”,國立陽明大學醫學工程研究所碩士論文,1987.
27. 王盈錦,吳至中,張寅,”光纖生物感測器之回顧與展望”,生物產業,第2期, pp.187-192, 1991.
28. Liao, S. C., and Alcala, J. R., “Real time fiber optic technologies for monitoring physiological parameters with optical biosensors,” Biomedical Engineering, Vol. 8, pp.325-331, 1996
29. Zhang, C., Feng, G., and Gao, Z., “Development of a new kind of dual modulated QCM biosensor,” Biosensors and Bioelectronics, Vol.12, pp.1219-1225. , 1997.
30. Jean, W., “Kinetic Analysis of Analyte Binding by Optical Biosensors:
Hydrodynamic Penetration of the Analyte Flow into the Polymer Matrix Reduces
the Influence of Mass Transport,” Analytical Biochemistry, Vol.270, pp.201-206, 1999.
31. Myszka, D. G., Morton, T. A., Doyle, M. L., and Chaiken, I. M., “Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor,” Biophysical Chemistry, Vol.64, pp.127-137, 1997.
32. Tran-Minn, C., Valin, D., “Enzyme-bound thermistor as an enthalpimetric sensor,” Anal. Chem., Vol.50, pp.1874-1878, 1978.
33. Chia-Wen, C., Jeng-Shong, S., “Preparation and appilication of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor,”Sensors and Actuators B, Vol.81, pp.1-8, 2001.
34. Thomas, W., Michael, R., Hans, S., “Immunosensing of photoimmobilized proteins on surface acoustic wave sensors,” Colloids and surfaces B:Biointerfaces, Vol.15, pp.139-146, 1999.
35. Wessa, T., Rapp, M.., Ache, H. J., “New immobilization method for SAW-biosensors : covalent attachment of antibodies via CNBr, ” Biosensors and Bioelectronics, Vol.14, pp.93-98, 1999.
36. 廖佳儀,”釕化合物葡萄糖生化感測器研究”,淡江大學化學學系碩士班碩士
論文,1998。
37. O’Connor, K. M., Arrigan, D. W., Svehla, G., “Calixarenes in electroanalysis,” Electroanalysis, Vol.7, No.3, pp.205-215, 1995.
38. Ohki, A., Lu, J., Hallman, J., Huang, X., Bartsch, R. A.,“Sodium ion-selective electrodes based on dibenzo-16-crown-5 compounds with pendent ester groups, ” Anal. Chem., Vol.67, pp.2405-2408, 1995.

39. Suzuki, K., Hisamoto, H., Siswanta, D., Hayashi, K., Kasahara, N., Wantanabe, K., Yamamoto, N., Sasakura, H., “Design and synthesis of sodium ion-selective ionophores based on 16-crown-5 derivatives for an ion-selective electrode,” Anal. Chem., Vol.68, pp.208-215, 1996.
40. Suzuki, K., Wantanabe, K., Matsumoto, Y., Kobayashi, M., Sato, S., Siswanta, D., Hisamoto, H., “Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion sensing component for an ion-selecitive electrode,” Anal. Chem., Vol.67, pp.324-334, 1995.
41. Mckittrick, T., Diamond, D., Marrs, D., O’Hagan, P., Mckervey, M., “Calcium-selective electrode based on a calyx[4]arene tetraphosphine oxide,” Talanta, Vol.43, pp.1145-1148, 1996.
42. Spichiger, U., Aiping, X., Citterio, D., Chaniotokis, N., Rusterholz, B., Simon, W., “From molecular recognition to analytical information using chemical sensors: Development of a combined catheter gastric pH-probe,” Electroanalysis, Vol.7, No.9, pp.859-863, 1995.
43. Katsu, T., Mori, Y., “Ion-selective electrode for salicylate assay in blood serum,” Talanta, Vol.43, pp.755-759, 1996.
44. Katsu, T., Mori, Y., Kotaoka, H., “A new bretylium-selective electrode for monitoring the drug in blood serum,” Analytical Letters, Vol.29, pp.1281-1292, 1996.
45. Yun, J. H., Meyerhoff, M. E., Yang, V. C., “Protamine-sensitive polymer membrane electrode: characterization and bioanalytical applications,” Analytical Biochemistry, Vol.224, pp.212-220, 1995.
46. 蔡君賢,”含鉻黃血鹽修飾碳糊電極之製備及其應用於電流式生醫感測器”,南台科技大學化學工程學系碩士班碩士論文,2005。
47. 藤嶋 昭、相澤益男、井上 徹著,陳震、姚建年等編譯,”電化學測定方法”,
北京大學出版社,ch.4, pp.86,1995。
48. 許文嘉,”含銅赤血鹽修飾平板式酵素電極應用於電流式生醫感測器”,南台科技大學化學工程學系碩士班碩士論文,2005。
49. 鄭人豪,”白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究”,南台科技大學化學工程學系碩士班碩士論文,2004。
50. 林瑜勛,”酵素電極特性評估之研究”,成功大學化學系碩士班碩士論文,2004。
51. Cass, A. E. G., Davis, G., Francis, G. D., Allen, A. H., Hill, O., “Ferrocene-mediated enzyme electrode for amperometric determination of glucose,” Anal. Chem., Vol.56, pp.667-671, 1984.

52. Hale, P. D., Boguslvsky, L. I., Inagaki, T., Karam, H. I., Lee, H. S., Skotheim, T. A., Okamoto, Y., “Amperometric glucose biosensors based on redox polymer-mediated electron transfer,” Anal. Chem., Vol.63, pp.677-682, 1991.
53. Kim, M. A., Lee, W. Y.,“Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film,” Analytica Chimica Acta, Vol.479, pp.143-150, 2003.
54. Kulys, J., Hansen, H. E., Rasmussen, T. B., Wang, J., Ozsoz, M.,“Glucose biosensor based on the incorporation of Meldola Blue and glucose oxidase within carbon paste, ” Analytica Chimica Acta, Vol.288, pp.193-196, 1994.
55. Ohara, T. J., Rajagopalan, R., Heller, A., “Glucose electrodes based on cross-linked bis(2,2’-bipyridine)chloroosmium(+/2+) complexed poly(1-vinylimidazole) films,” Anal. Chem., Vol.65, pp.3512-3517, 1993.
56. O’Neill, Robert D., Chang, Seung-Cheol., Lowry, John P., McNeil, Calum J., “Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate.” Biosensors and Bioelectronics, Vol.19, No.11, pp.1521-1528, 2004.
57. Wang, J., Chen, O., “Enzyme microelectrode array strips for glucose and lactate,” Anal. Chem., Vol.66, pp.1007-1011, 1994.
58. Abe, T., Lau, Y. Y., Ewing, A. G.,“Fluorescence imaging of gas-phase molecules produced by matrix-assisted laser desorption, ” Anal. Chem., Vol.64, pp.2160-2163, 1992.
59. Chi, Q., Dong, S., “Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode,” Analytica Chimica Acta, Vol.278, pp.17-23, 1993
60. Rabinovich, L., Lev, O., Tsirlina, G. A., “Electrochemical characterization of Pd modified ceramic carbon electrodes: partially flooded versus wetted channel hydrophobic gas electrodes,” Journal of Electroanalytical Chemistry, Vol.466, No.1, pp.45-59, 1999.
61. Wang, J., Naser, N., Angnes, L., Wu, H., Chen, L.,“Metal-dispersed carbon paste electrodes, ” Anal. Chem., Vol.64, pp.1285-1288, 1992.
62. Wang, J., Liu, J., Chen, L., Lu, F.,“Highly selective membrane-free mediator-free glucose biosensor, ” Anal. Chem., Vol.66, pp.3600-3603, 1994
63. Sakslund, H., Wang, J., Hammerich, O.,“Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8μm carbon fiber, ” Journal of Electroanalytica Chemistry, Vol.402, pp.149-160, 1992.


64. Wang, J., Angnes, L.,“Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes, ” Anal. Chem., Vol.64, pp.456-459, 1992
65. J. F. Keggin and F. D. Miles, “Structures and formule of the Prussian blues and related compounds,” Nature, Vol.137, pp.577-578, 1936.
66. Bonnette, Jr. A. K., Gandy, S. E.,“Isotopic exchange in Prussian blue, ” Journal of Chemical Education, Vol.58, pp.355-357, 1981.
67. Inoue, H., S. Yangisawa, S., “Bonding nature and semiconductivity of Prussian blue and rilated compounds,” J. Inorg. Nucl. Chem., Vol.36, pp.1409-1411, 1974.
68. Buser, H. J., Ron, G., Ludi, A., Engel, P., “Crystal structure of cadmium hexacyanopalladate(Ⅳ),” J. Chem. Soc. Dalton. Trans., Vol.16, pp.2473-2474, 1974.
69. 陳冠宏,”含鎳赤血鹽和亞銅赤血鹽修飾碳糊電極應用於生醫感測器之研
究”,南台科技大學化學工程學系碩士班碩士論文,2004
70. 施偉仲,”還原型葡萄糖生化感測器之發展研究”,淡江大學化學學系碩士班
碩士論文,1997。
71. Karyakin, A. A., Gitelmacher, O. V., Karyakina, E. E.,“Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose,” Anal. Chem., Vol.67, pp.2419-2423, 1995.
72. Mattos, I. L., Gorton, L., Ruzgas, T., “Sensor and biosensor based on Prussian blue modified gold and platinum screen printing electrodes,” Biosensor and Bioelectronics, Vol.18, pp.193-200, 2003.
73. Li, T., Yao, Z., Ding, L., “Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian blue modified electrode,” Sensor and Actuators B, Vol.101, pp.155-160, 2004.
74. 鄭人豪,南台科技大學化學工程研究所碩士論文,2004年。
75. 李一忠,”利用兩種固定酵素生產果寡糖於氣舉式反應器中”,國立中正大學化學工程學系碩士班碩士論文,2002。
76. Traeger, M., Quazi, G. N., Onken, U., and Chopra, C. L., Contribution of endo- and exocellylar glucose oxidase to gluconic acid production at increased dissolved oxygen concentrations. J. Tech. Biotechnol., Vol.50, pp.1-11, 1991.
77. Mischakm, H., Kubicek, C. P., and Rohr, M., Formation and location of glucose oxidase in critic acid producing mycelia of Aspergillus niger. Appl. Microbiol. Biotechnol., Vol.21, pp.27-31, 1985.
78. Visser, J., Biochemical and molecular approaches in understanding carbohydrate metabolism in Aspergillus niger. J. Chem. Tech. Biotechnol., Vol.50, pp.111-113, 1991.

79. 彭振育,”應用含鈷赤血鹽修飾碳糊電極製造電流式生醫感測器”,南台科技大學化學工程學系碩士班碩士論文,2004。
80. 黃振宏,”Nafion溶液成膜的物理性質與形態學”,元智大學化工學系碩士班
碩士論文,2003。
81. Karyakin, A. A., Gitelmacher, O. V., and Karyakina, E. E., Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose, Anal. Chem., Vol.67, pp.2419-2423, 1995.
82. 施偉仲,”還原型葡萄糖生化感測器之發展研究”,淡江大學化學學系碩士班
碩士論文,1997。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top