跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊宗瑋
研究生(外文):Yang Tsung Wei
論文名稱:狀態轉換模型與最適避險比率之探討
論文名稱(外文):The discussion of regime switching model and optimal hedge ratios
指導教授:梁雪富梁雪富引用關係
學位類別:碩士
校院名稱:南台科技大學
系所名稱:財務金融系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:74
中文關鍵詞:隨機係數自迴歸模型馬可夫轉換模型避險比率雙變量GARCH
外文關鍵詞:Random Coefficient Autoregressive modelMarkov Regime Switching modelhedge ratioBivariate GARCH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是以馬可夫轉換模型(Markov Regime Switching Model;MRS)來探討台灣股價指數期貨之最適避險比率。在過去的文獻裡,期貨與現貨之最適避險比率多是以雙變量GARCH模型來作探討,因為雙變量GARCH模型能探討期貨與現貨報酬的波動現象與交互影響效果,但根據Alizadeh and Nomikos(2004)說明,期貨與現貨報酬的動態相互關係可能具有狀態轉換的特性,因此建議,期貨與現貨之避險比率可能取決於市場狀態的影響,此外Sarno and Valente(2000)也以狀態轉換模型解釋期貨與現貨價格之間的相互關係,其效果比簡單線性迴歸模型佳,所以本文即以馬可夫轉換模型來探討台灣股價指數期貨之最適避險比率。除此之外,本研究也加入隨機係數自迴歸模型(Random Coefficient Autoregressive model;RCAR)來探討期貨與現貨報酬間的動態關係。所以本研究在避險比率的探討上,除了以上兩個模型外,也加入其它模型(如:雙變量GARCH、OLS、Naïve…等模型)來加以比較並探討不同避險模型之避險績效。
最後從本文的實證結果得知,隨機係數自迴歸模型在樣本內(in-sample)的估計上優於其它避險模型,而馬可夫轉換模型次之;但樣本外(out-of-sample)的預測能力,雙變量GARCH模型則比其它避險模型好,隨機係數自迴歸模型次之。所以本研究建議,當投資者在操作避險策略時,不同商品間可能存在的各種相互關係均是投資者或風險管理者所要仔細考量的。
This research primarily uses Markov Regime Switching model to investigate the optimal hedge ratio between Taiwan Stock Index and Taiwan Future Exchange (TAIFEX). In the past researches, when it comes to hedge ratio between spot and future markets, Bivariate-GARCH model is often used. This is because that Bivariate-GARCH model is able to catch the interaction between these two markets.On the other hand, Alizadeh and Nomikos(2004)claimed that there may be different regimes in the interaction between stock index and index future. Therefore, hedge ratios may depend on different regimes. Also, Sarno and Valente(2000)found Regime Switching Model outperforms OLS when investigating the relationship between stock index and index futures price. Thus, this research examines the optimal hedge ration in TAIFEX with Markov Regime Switching model.This research also takes Random Coefficient Autoregressive model (RCAR) and other models into consideration, such as Bivariate GARCH model, OLS, and Naïve, to compare the hedge efficiency between all models.
Finally, the empirical result shows: RCAR outperforms other models in-sample, and MRS model is next to it; asymmetric Bivariate GARCH has better out-of-sample performance than other models, and RCAR Model is only second to it. Therefore, this research suggests that investors will be able to enhance efficiency in hedge strategy if they could take account of different regimes.
摘要 i
誌謝 iii
目次 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 本文架構 4
1.4 研究流程圖 5
第二章 文獻回顧 6
2.1 股價指數期貨之功能與避險理論 6
2.1.1 股價指數期貨之功能 6
2.1.2 避險理論 7
2.2 最適避險比率之文獻探討 10
2.2.1 固定避險比率 11
2.2.2 動態避險比率 12
第三章 研究方法 17
3.1 單根檢定 17
3.1.1 定態與非定態 17
3.1.2 Dickey-Fuller單根檢定 18
3.1.3 ADF單根檢定 19
3.2 共整合的檢定 20
3.2.1 共整合的概念 20
3.2.2 共整合的檢定 21
3.3 最適避險比率的推導 24
3.4 避險模型 27
3.4.1 天真避險 27
3.4.2 靜態避險 27
3.4.3 馬可夫轉換模型與最適避險比率 28
3.4.4 隨機係數自迴歸模型 42
3.4.5 Bivariate GARCH Model與動態避險比率 48
3.4.6 Bivariate GARCH-CI模型 51
3.5 績效衡量 52
第四章 實證研究 53
4.1 資料來源與分析 53
4.2 單根檢定 54
4.3 共整合檢定 55
4.4 MRS模型與RCAR模型的估計結果 56
4.5 Bivariate GARCH模型的估計結果 59
4.6 圖形分析 61
4.7 避險績效的探討 64
第五章 結論與建議 66
5.1 結論 66
5.2 建議 67
參考文獻 68
附錄
A 馬可夫模型估計流程圖 73
B Kalman Filter模型估計流程圖 74
1.沈育展、洪瑞成、邱建良、李命志,TAIFEX與MSCI台股指數期貨與現貨值皆避險策略之研究,商管科技季刊,第五卷,第二期,PP.169-184,民93年。
2.邱建良、魏志良、吳佩珊、邱哲修,日經225指數期貨之避險績效與最適避險策略之探討,輔仁管理評論,第十一卷,第一期,PP. 153-180,民93年。
3.莊盛旭,投資股市最適避險比率之研究,朝陽科技大學財務金融所論文,民93年。
4.張瓊嬌,不對稱效果與誤差修正項對台股指數期貨之動態避險比率影響之研究,朝陽科技大學「第九屆財金理論與實務研討會」論文,民94年。
5.Alizadeh, A., and N., Nomikos, “A Markov Regime Switching approach for hedging stock indices,” Journal of Futures Markets, Vol. 24, No. 7, 2004, pp. 649-674.
6.Baillie, R., and R., Myers, “Bivariate GARCH estimate of the optimal commodity futures hedge,” Journal of Applied Econometrics, Vol. 6, 1991, pp. 109-124.
7.Bera, A. K., P., Garcia, and J. S., Roh, “Estimation of time-varying hedge ratios for corn and soybean: BGARCH and random coefficient approaches,” The Indian Journal of Statistics, Vol. 59, 1997, pp. 346-368.
8.Bollerslev, T., “Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, Vol. 31, 1986, pp. 307-327.
9.Bollerslev, T., R., Engle, and J., Wooldridge, “A capital asset pricing model with time-varying covariances,” Journal of Political Economy, Vol. 96, 1988, pp. 116-131.
10.Brooks, C., O. T., Henry, and G.., Persand, “The effect of asymmetries on optimal hedge ratios,” Journal of Business, vol. 75, No. 2, 2002, pp. 333-352.
11.Butterworth, D., and P., Holmes,“The hedging effectiveness of stock index futures: evidence for the FTSE-100 and FTSE-Mid250 indexes,” University of Durham Working Paper, 1996.
12.Cecchetti, S., R., Cumby, and S., Figlewski, “Estimation of the optimal futures hedge,” Review of Economics and Statistics, Vol. 70, 1988, pp. 623-630.
13.Choudhry, T., “Short-run deviations and optimal hedge ratio: evidence from stock futures,” Journal of Multinational Financial Management, Vol. 13, 2003, pp. 171-192.
14.Dacco, R., and S., Satchell, “Why do regime-switching models forecast so badly? ,” Journal of Forecasting, Vol. 18, 1999, pp. 1-16.
15.Diebold, F. X., J. H., Lee, and G. G., Weinback, 1994, Regime switching with time-varying transition probabilities. In C. Hargreaves(Ed.), Nonstationary time series analysis and cointegration (pp.283-302). New York/Oxford: Oxford University Press.
16.Ederington, L. H., “The hedging performance of the new futures market,” The Journal of Finance, Vol. 34, 1979, pp. 157-170.
17.Engle, R. F., “Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflations,” Econometrica,Vol. 50, 1982, pp. 987-1007.
18.Engle, R. F., and C. W. J.,Granger, “Cointegration and error correction: Representation, estimation and testing,” Econometrica,Vol. 55, 1987, pp. 251-276.
19.Engle, R., and K., Kroner, “Multivariate simultaneous generalized ARCH,” Econometric Theory, Vol. 11, 1995, pp. 122-150.
20.Engle, R., and B., Yoo, “Forecasting and testing in the cointegrated system,” Journal of Econometrics, Vol. 35, 1987, pp. 143-159.
21.Fama, E. F., and K., French, “Commodity futures prices: Some evidence on forecast power, premiums and the theory of storage,” The Journal of Business, Vol. 60, 1987, pp. 55-73.
22.Figlewski, S., “Hedging performance and basic risk in stock index futures,” Journal of Finance, Vol. 39, 1984, pp. 657-669.
23.Filardo, A. J., “Business cycle phases and their transtition dynamics,” Journal of Business and Economic Statistics, Vol. 12, 1994, pp. 299-308.
24.Fong, W. M., and K. H., See, “A Markov switching model of the conditional volatility of crude oil prices,” Energy Economics, Vol. 35, 2002, pp. 71-95.
25.Fortune, P., “An assessment of financial market volatility: bills, bonds, and stocks,” New England Economic Review, Federal Reserve Bank of Boston, November/December, 1989, pp. 13-28.
26.Fuller, W. A., 1976, “Introduction to statistical time series,” John Wiley, New York.
27.Ghosh, A., “Cointegration and error correction models: Intertemporal causality between index and futures prices,” Journal of Futures Markets, Vol. 13, 1993, pp. 193-198.
28.Granger, C. W. J., and Newbold , “Spurious regression in econometrics,” Journal of Econometrics, Vol. 2, 1974, pp. 111-120.
29.Gray, R. W., and D. JS., Rutledge, “The economics of commodity futures markets: A survey,” Review of Marketing and Agricultural Economics, Vol. 3, No. 4, 1971, pp. 57-108.
30.Hamilton J. D., 1994, Time Series Analysis, New Jersey: Princeton University Press.
31.Hamilton, J. D., “A new approach to the economic analysis of nonstationary time series and business cycle,” Econometrica, Vol. 57, 1989, pp. 357-384.
32.Heifner, R. G., “Optimal Hedging Levels and Hedging Effectiveness in Cattle Feeding,” Agricultural Economics Research, Vol. 24, 1972, pp. 25-36.
33.Herbst, A., D., Kare, and J., Marshall, “A time varying, convergence adjusted, minimum risk futures hedge ratio,” Advances in Futures and Options Research, Vol. 6, pp. 137-155.
34.Howard, C. T., and L.J., D’Antonio , “A risk-return measure of hedging effectiveness,” Journal of Financial and Quantitative Analysis, Vol. 19, No. 1, 1984, pp. 373-381.
35.Johnson, L. L., “The theory of hedging and speculation in commodity futures,” Review of Economic Studies, Vol. 27, 1960, pp. 139-151.
36.Johansen, S., “Statistical analysis of cointegration vector,” Journal of Economic Dynamics and Control, Vol. 12, 1988, pp. 231-254.
37.Johansen, S., and K., Juselirs, “Maximum likelihood estimation and inference on cointegration with application to the demand for money,” Journal of Econometrics, Vol. 53, 1990, pp. 211-244.
38.Kahl, K. H., “Determination of the Recommended Hedging Ratio,” American Journal of Agricultrual Economics, Vol. 65, 1983, pp. 603-605.
39.Kim, C. J., “Dynamic Linear Models with Markov-Switching,” Journal of Econometrics, Vol. 60, 1993, pp. 1-22.
40.Kim, C. J., and C. R., Nelson, 1999, State-space models with regime switching: Classical and Gibbs-samplying approaches with applications. Cambridge, MA: MIT Press.
41.Krolzig, H. M., 1999, “Statistical analysis of coingegrated VAR processes with Markovian regime shifts, Unpu” blished manuscript, Department of Economics, University of Oxford.
42.Lamoureux, C., and W. D., Lastrapes, 1990, “Persistence in variance, structural change, and the GARCH model,” Journal of Business and Economic Statistics, Vol. 8, 1990, pp. 225-234.
43.Lee, H. T., J. K., Yoder, R. C., Mittelhammer, and J. J., Mccluskey, “A random coefficient autoregressive Markov Regime Switching model for dynamic futures Hedging,” The Journal of Futures Markets, Vol. 26, No. 2, 2006, pp. 103-129.
44.Marsh, I. W., “High-frequency Markov switching models in the foreign exchange market,” Journal of Forecasting, Vol. 19, 2000, pp. 123-134.
45.Meneu, V., and H., , “Asymmetric covariance in spot-futures markets,” The Journal of Futures Markets, Vol. 23, No. 11, 2003, pp. 1019-1046.
46.Mili, M., and F., Abid,“Optimal Hedge Ratios Estimates: Static v.s. Dynamic Hedging,” Finance India, Vol. 18, 2004, pp. 655-670.
47.Moschini, C., and R. J., Myers, “Testing for constant hedge ratios in commodity markets: a multivariate GARCH approach,” Journal of Empirical Finance, Vol.9, 2002, pp. 589- 603.
48.Park, T., and L., Switzer, “Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: a note,” Journal of Futures Markets, Vol. 15, 1995a, pp. 61-67.
49.Park, T., and L., Switzer, “Time-varying distribution and the optimal hedge ratios for stock index futures,” Applied Financial Economic, Vol. 5, 1995b, pp. 131-137.
50.Part, H., and A., Bera, “Interest rate volatility, basis, and heteroscedasticity in hedging mortgages,” American Real Estate and Urban Economics Association, Vol. 15, 1987, pp. 79-97.
51.Rossi, E., and C., Zucca , “Hedging interest rate risk with multivariate GARCH,” Applied Financial Economics, Vol. 12, 2002, pp. 241-251.
52.Sarno, L., and G., Valente, “The cost of carry model and regime shifts in stock index futures markets : An empirical investigation,” The Journal of Futures Markets, Vol. 20, 2000, pp. 603-624.
53.Sarno, L., and G., Valente, “Modelling and forecasting stock returns: exploiting the futures market, regime shifts and international spillovers,” Journal of Applied Econometrics, Vol. 20, 2005, pp.345-376.
54.Stein, J. L., “The Simultaneous Determination of Spot and Futures Prices,” American Economic Review, Vol. 51, 1961, pp.1012-1025.
55.Stock, J.H., and M.W., Watson, “Testing for common trends,” Journal of the American Statistical Association, Vol. 83, 1988, pp.1097-1107.
56.Wahab, M., “Conditional dynamics and optimal spreading in the precious metals futures markets,” Journal of Futures Markets, Vol. 15, 1995, pp. 131-166.
57.Working, H., “Futures trading and hedging,” American Economic Review, 1953, pp. 314-343.
58.Working, H., “New Concepts Concerning Futures Markets and Prices,” American Economic Review, 1962, pp.431-459.
59.Viswanath, M., “Efficient use of information, convergence adjustments, and regression estimates of hedge ratios,” The Journal of Futures Markets, Vol. 13, 1993, pp. 43-53.
60.Yang, W., and D., Allen, “Multivariate GARCH hedge ratios and hedging effectiveness in Australian futures markets,” Accounting and Finance, Vol. 45, 2004, pp.301-321.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top