跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡承穎
研究生(外文):Cheng-Ying Tsai
論文名稱:數位相片之人物註釋與辨識系統
論文名稱(外文):The Human Annotation and Recognition System for Digital Images
指導教授:陳定宏陳定宏引用關係
指導教授(外文):Ding-Horng Chen
學位類別:碩士
校院名稱:南台科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:人臉偵測臉部識別學習向量演算法
外文關鍵詞:Face DetectionFace RecognitionLVQ
相關次數:
  • 被引用被引用:1
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:1
輕巧的數位影像擷取設備如數位相機與具備照相功能的手機大量普及,使得數位影像的產生十分便利。而相對而來所造成的龐大影像資料之管理、註釋
與檢索也變成研究的重要課題。
本篇論文中,我們針對相片中人物的註釋與辨識問題,以一種半自動的方式提出一個初步可行的解決方法。在人臉偵測及人臉辨識的相關研究中,所需加強的是準確率的提升;而輸入影像的前處理步驟及輸入影像的品質也都可能明顯影響後續處理人臉偵測及辨識的準確性。在本論文中,我們首先尋找相片中人臉部位,利用非線性的YCb’Cr’色彩空間轉換來找出膚色位置,再利用人臉上的特徵來分析判斷此區塊是否為人臉部位。在此我們假設人們在拍攝一系列的相片時,他們所穿的衣服都是不變的,因此衣服的顏色可以用來當作人臉的一種特徵。確定人臉位置後,我們擷取臉部下方的衣服區塊的色彩值來當作人物註釋與辨識的依據。爲了不使衣服區塊因顏色眾多而影響辨識,我們利用K-means 分群法分析此區塊,選出區塊中顏色比重最多者作為樣本特徵。之後再以LVQ 演算法重複訓練,使衣服區塊之顏色樣群分佈更加明確。此時之衣服顏色便可用來當作確認辨識人物的特徵。
我們實作出一個具有註釋能力的數位相片管理系統以驗證本論文所提方法之可行性。系統的操作流程如下所述。首先系統自動定位人臉位置,使用者可將人物名字或描述文字註釋到相片中的人臉位置。在連續拍攝的相片集中,系統會依據之前相片所儲存的人臉衣服對應關係,偵測並辨識相片中的每一個的人臉位置;並根據資料庫中的特徵,對於人臉加以自動註釋。若使用者發現註釋錯誤,則可針對錯誤加以更新。更新後的資訊將會加入資料庫內,用以修正人臉與衣服的對應關係。重複以上述方法,我們將可建構出人物影像特徵與人物說明資料庫,以提供大量相片所需的註釋與管理功能。實驗結果顯示,本論文所採用之影像特徵與其他的註釋項目相互搭配後,可提供影像檢索與相片管理作業中良好的註釋依據。
The handy equipments such as digital cameras and cellular phones with camera function provide a convienient way to capture images. Therefore, the additional demands such as image management, image annotation, and image retrieval have become the major issues.
In this thesis, we will focus ourself on the face annotation problem and propose a feasible solution. The major concern in face detection and recognition problems is the accuracy in recognizing the people in the photo with the exact identity. Many factors could influence the accuracy of face detection and face recognition. In this thesis, we propose a semi-automatic approach to solve these problems. First, we use a non-linear YCb’Cr’ color space transformation to detect the location of skin color, and then we search the face positions by using the geometric properties of faces. Here we make an assumption that people generally wear the same clothes in taking a series of photos. While the faces are located, the RGB values of the clothes beneath the faces are used as the features to represent the faces. In order to simplify the color feature of clothes, we use K-means clustering to analyze this cloth block and select the major color as the cloth feature. The LVQ algorithm training process is repeated to make the color distributing between different cloth blocks more clear.
We have developed a sytem to verify the proposed method. The sytem is performed as follows. First, the system automatically locates the face position and computes the corresponding cloth feature. User gives a name or text description to this face, the correspondence between the face and the annotation text has been established. The system will detect the face positions in a series of photos and give the detected faces the existent annotation text. If the annotation does not match to the detected faces, user can add a new annotation or correct the wrong matchings. The experiment shows the proposed method can achieve a good performance in face annotation and recognition. It also provides a convient tool to manage and retrieve the huge amount of digital photos.
摘 要 i
Abstract iii
致 謝 v
目 次 vi
表 目 錄 viii
圖 目 錄 ix
第一章 簡介 1
1.1 無名相簿(無名小站) 3
1.2 ABSee 6
1.3 Flickr 8
1.4 論文組織與架構 10
第二章 臉部偵測法與系統架構 11
2.1 Template matching approach 11
2.2 Neural network approach 14
2.3 Knowledge-based approach 15
2.4 Color-based approach 16
2.5 系統架構 20
第三章 人臉偵測演算法 23
3.1 色彩空間 23
3.1.1 RGB色彩空間 23
3.1.2 HSV色彩空間 25
3.1.3 YCbCr色彩空間 27
3.1.4 L*a*b色彩空間 28
3.2 膚色色彩空間轉換 29
3.3 去除雜訊 34
3.3.1 影像二值化 34
3.3.2 形態學(morphology) 34
3.4 搜尋臉部特徵 38
第四章 人物註釋演算法 43
4.1 K-means Clustering演算法 43
4.2 LVQ演算法訓練 47
第五章 實驗結果 52
5.1 系統資料庫 52
5.2 系統介面與操作步驟 56
5.3 實驗結果分析與討論 64
5.3.1 人臉偵測 64
5.3.2 人物自動註釋 67
第六章 結論與未來工作 73
參考文獻 74
1.無名網路相簿(無名小站), http://www.wretch.cc/.
2.ABSee(數位影像的家), http://absee.com.tw/.
3.Flickr, http://www.flickr.com/.
4.Y. Suzuki and T. Shibata, “Multiple-clue face detection algorithm using edge-based feature vectors,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. V-737-740, 2004.
5.M. Yagi and T. Shibata, “An image representation algorithm compatible with neural-associative-processor-based hardware recognition systems,” IEEE Transaction on Neural Networks, vol. 14, no. 5, pp. 1141-1161, 2003.
6.H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 203-208, 1996.
7.S. Karungaru, M. Fukumi, and N. Akamatsu, “Human face detection in visual scenes using neural networks, ” Transaction of Institute of Electrical Engineers of Japan (IEEJ), vol. 122c, pp. 995-1000, 2002.
8.K.-W. Wong, K.-M. Lam, and W.-C. Siu, “An efficient color compensation scheme for skin color segmentation, ” Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS2003), Vol. II, pp. 676-679, 2003.
9.G. Yang and T.-S. Hung, “Human face detection in complex background,” Pattern Recognition, vol.27, no.1, pp53-63, 1994.
10.A. Lanitis, C. J. Taylor, and T. F. Cootes, “An automatic face identification system using flexible appearance models,” Image and Vision Compution, vol. 15, no. 5, pp. 393-401, 1995.
11.C. Lin and K.-C. Fan, “Human face detection using geometric triangle relationship,” Proceedings. 15th International Conference on Pattern Recognition, vol 2, pp. 941-944, 2000.
12.R.-L. Hsu, M. Abdel-Mottaleb, and A.K. Jain, “Face detection in color images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002.
13.R.-L. Hsu, M. Abdel-Mottaleb, and A.K. Jain, “Face detection in color images,” Proceedings. 2001 International Conference on Image Processing, vol. 1, pp. 1046-1049, 2001.
14.H. Jee, K. Lee, and S. Pan, “Eye and face detection using SVM,” Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, pp. 577-580, 2004.
15.M. Xu and P. Franti, “A heuristic K-means clustering algorithm by kernel PCA,” 2004 International Conference on Image Processing, vol 5, pp. 3503-3506, 2004.
16.J.-Z. Huang, M.-K. Ng, H. Rong, and Z. Li, “Automated variable weighting in k-means type clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 657-668, 2005.
17.S. Omatu, T. Kosaka, and M. Teranisi, “Classification of the Italian Liras using the LVQ method,” Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2212-2215, 2003.
18.Y. Jun and D.-H. Wang, “Sequential face recognition based on LVQ networks,” Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology, pp. 284-287, 2005.
19.Y.-W. Yuan, L.-M. Yan, and H.-H. Zhan, “A robust face detection system using evolving neural networks,” 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2960-2964, 2003.
20.M.-J. Seow, D. Valaparla, and V. K. Asari, “Neural network based skin color model for face detection,” Proceedings. 32nd Applied Imagery Pattern Recognition Workshop, pp. 141-145, 2003.
21.Y.-H. Chan and S. A. R. Abu-Bakar, “Face detection system based on feature-based chrominance colour information,” International Conference on Computer Graphics, Imaging and Visualization, pp. 153-158, 2004.
22.J. Kovac, P. Peer, and F. Solina, “Human skin color clustering for face detection,” The IEEE Region 8 EUROCON 2003. Computer as a Tool, vol. 2, pp. 144-148, 2003.
23.F. Bayoumi, M. Fouad, and S. Shaheen, “Feature-based human face detection,” NRSC 2004. Proceedings of the Twenty-First National Radio Science Conference, pp. C21-1-10, 2004.
24.L.-H. Zhao, X.-L. Sun, J.-H. Liu, and X.-H. Xu, “Face detection based on skin color,” Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3625-3628, 2004.
25.M. Jones and J. M. Rehg, “Statistical color models with application to skin detection,” Technical Report Series, Cambridge Research Laboratory, 1998.
26.B. Menser and M. Bruning, “Locating human faces in color images with complex background,” Intelligent Signal Processing and Comm. Systems, pp. 533-536, 1999.
27.E. Saber and A. M. Tekalp, “Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost functions,” Pattern Recognition Letters, vol.19, pp. 669-680, 1998.
28.K. Sobottka and I. Pitas, “A Novel Method for Automatic Face Segmentation, Facial Feature Extraction and Tracking,” Signal Processing: Image Comm, vol. 12, pp. 263-281, 1998.
29.MPEG7 Content Set from Heinrich Hertz Institute, http://www.darmstadt.gmd.de/mobile/hm/projects/MPEG7/Documents/N2466.html, 1998.
30.O. Cuisenaire, “Locally Adaptable Mathematical Morphology,” ICIP 2005. IEEE International Conference on Image Processing, vol. 2, pp. 125-128, 2005.
31.P. Y. Lau, and S. Ozawa, “A region-based approach combining marker-controlled active contour model and morphological operator for image segmentation,” EMBC 2004. Conference Proceedings. 26th Annual International Conference of the Engineering in Medicine and Biology Society, vol. 1, pp. 1652-1655, 2004.
32.S. Ongwattanakul, P. Chewputtanagul, D.J. Jackson, and K.G. Ricks, “Scalable giga-pixels/s binary image morphological operations,” Proceedings of the 2003 International Symposium on Circuits and Systems, vol. 2, pp. II-444-II-447, 2003.
33.H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural Networks for Short-Term Load Forecasting: A Review and Evaluation,” IEEE Transactions on Power Systems, vol. 16, no. 1, pp. 44-55. 2001.
34.D. C. Park, “Centroid Neural Network for Unsupervised Competitive Learning,” IEEE Transactions on Neural Networks, vol. 11, no. 2, pp. 520-528, Mar. 2000.
35.J. Vesanto and E. Alhoniemi, “Clustering of the Self-Organizing Map,” IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 586-600, May 2000.
36.Y. Jun and D.-H. Wang, “Sequential face recognition based on LVQ networks,” Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology, pp. 284–287, May 2005.
37.F. Nack and A.T. Lindsay, “Everything you wanted to know about MPEG-7. 1,” IEEE MultiMedia, vol. 6, pp. 65-77, 1999.
38.F. Nack and A.T. Lindsay, “Everything you wanted to know about MPEG-7. 2,” IEEE MultiMedia, vol. 6, pp.64-73, 1999.
39.S.-F. Chang, T. Sikora, and A. Purl, “Overview of the MPEG-7 standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 6, pp. 688-695, 2001
40.M. Abdel-Mottaleb and S. Krishnamachari, “Multimedia descriptions based on MPEG-7: extraction and applications,” Multimedia, IEEE Transactions on Multimedia, vol. 6, no.3, pp. 459-468, 2004.
41.H. L. Tang, R. Hanka and H. H. S. Ip, “Histological image retrieval based on semantic content analysis,” IEEE Transactions on Information Technology In Biomedicine, vol. 7, no. 1, pp. 26-36, 2003.
42.T. Sikora, “The MPEG-7 visual standard for content description-an overview,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 6, pp.696-702, 2001.
43.P.-J. Kuo, T. Aoki, and H. Yasuda, “MPEG-7 based dozen dimensional digital content architecture for semantic image retrieval services,” 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, pp. 517-524, 2004.
44.P.-J. Kuo, T. Aoki, and H. Yasuda, “Building personal digital photograph libraries: an approach with ontology-based MPEG-7 Dozen Dimensional Digital Content architecture,” Proceedings of Computer Graphics International, pp. 482-489, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 馮震宇 著 (2004),〈數位內容之保護與科技保護措施 ― 法律、產業與政策的考量〉,《月旦法學雜誌》,第105期,頁:68-91。
2. 章忠信 著 (1999),〈美國一九九八年數位化千禧年著作權法案簡介〉,《萬國法律》107期,頁25-42。
3. 章忠信 著 (1999),〈美國一九九八年數位化千禧年著作權法案簡介〉,《萬國法律》,第107期,頁:25-42。
4. 張懿云 著 (2001),〈「世界智慧財產權組織表演及錄音物條約」關於錄音物製作人之保護〉,《科技法律透析》,第13卷第8期,頁:32-48。
5. 張於仁 著 (1994),〈歐體智慧財產權現況報導 ― 著作權篇〉,《資訊法務透析》,7月,頁:20-41。
6. 張念茵 著 (2001),〈Napster以Peer to Peer(P2P)科技帶動電子化時代的另一場革命﹖〉,《電子化企業經理人報告: e Business Executive Report》,第22期,頁:88-93。
7. 施韻茹 著 (2004),〈華文音樂中心是幻想還是理想?論台灣流行音樂產業的競爭優勢〉,《傳播與管理研究》,第4卷第1期,頁:113-138。
8. 邱垂泰、簡維能 著 (1999),〈美國司法部控訴微軟反托辣斯案探析〉,《立法院院聞》,第27卷第12期,頁:52-65。
9. 林柏杉 著 (2000),〈從市場觀點論著作之合理使用--分析「市場替代效果」與「市場失靈」之理論〉,《華岡社科學報》,第14期,頁87-130。
10. 周德宇 著 (民89),〈智慧財產權之經濟淺析--靜態效率與動態效率的弔詭〉,《智慧財產季刊》,第32期,頁45-54。
11. 周德宇 著 (2001),〈新經濟?新智慧財產權?--兼論最適智慧財產權〉,《國家發展研究》,第1卷第1期,頁117-145。
12. 馮震宇 著 (2003),〈新著作權法重要修正內容與爭議問題簡介〉,《月旦法學雜誌》,第101期,頁:51-61。
13. 章忠信 著 (2000),〈數位化網際網路環境對重製權之衝擊與因應〉,《萬國法律》,第111期,頁:74-91。
14. 吳明蔚、林盈達 著 (2003),〈對等式(P2P)網路技術〉,《電腦與通訊》,第103期,頁:97-104。
15. 朱敬一 著 (1998),〈法律經濟的源起、發展與遠景〉,《競爭政策通訊》,頁14-19。