1.沈仁傑,多商店下的關聯規則挖掘,國立中央大學資訊管理學系碩士論文,民91年6月。
2.黃仁鵬,藍國誠,高效率探勘關聯規則之演算法-EFI,資訊管理學報。(Acccepted)3.黃仁鵬、錢依佩、吳聲弘,高效率之關聯規則探勘演算法,第十四屆國際資訊管理學術研討會,p155,民92年6月。
4.黃南傑,高效率拆解之關聯規則探勘,南台科技大學資訊管理系碩士論文,民93年6月。5.熊浩志,快速資料探勘演算法與相關應用,南台科技大學 資訊管理系碩士論文,民94年。6.Pieter Adriaans, Dolf Zantinge, Data Mining. Addison Wesley Longman, 1996
7.R. Agrawal, & R. Srikant, "Fast algorithms for mining association rules," Proceedings of 1994 International Conference on Very Large Data Bases, pp.487-499, 1994.
8.R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules Between Sets of Items in Large Databases," In proc. of the ACM SIGMOD Conference on Management of Data, pp.207-216, 1993.
9.M. Antonie, O. R. Zaine, and A. Coman, "Application of Data Mining Techniques for Medical Image Classification," Proc. of Second Intl. Workshop on Multimedia Data Mining (MDM/KDD'2001) in conjunction with Seventh ACM SIGKDD, pp.94-101, San Francisco, CA, August 26, 2001.
10.K. Asanobu, "Data Mining for Typhoon Image Collection," Proceedings of the 2nd International Workshop on Multimedia Data Mining, pp.68-77, August 2001.
11.J. Basak, A. Sudarshan, D. Trivedi and M. S. Santhanam, "Weather Data Mining Using Independent Component Analysis," The Journal of Machine Learning Research, Volume 5, pp.239-253, December 2004.
12.S. Brin, R. Motwani, J. D. Ullman, and S. Tsur,"Dynamic Itemset Counting and Implication Rules for Market Basket Data," ACM SIGMOD Conf. Management of Data, 1997.
13.F. C. Tseng, and C. C. Hsu. "Creating frequent patterns with the frequent pattern list," Proc. Of the Asia Pacific Conference of Data Mining and Knowledge Discovery, Hong Kong, pp.376-386, 2001.
14.J. Han, and M. Kamber, "Data Mining: Concepts and Techniques," Morgan Kaufmann, August 2000.
15.J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns without Candidate Generation," Proc. ACM SIGMOD Int. Conf. on Management of Data, pp.1-12, 2000.
16.D. Lin, and Z. M. Kedem, "Pincer Search: A New Algorithm for Discovering the Maximum Frequent Set," Proceedings of the 6th International Conference on Extending Database Technology: Advances in Database Technology, pp105-119, 1998.
17.J. Liu, Y. Pan, K. Wang, and J. Han, " Mining Frequent Item Sets by Opportunistic Projection '', Proc. 2002 Int. Conf. on Knowledge Discovery in Databases (KDD'02), Edmonton, Canada, July 2002.
18.M. Seno and G. Karypis, "LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint," Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM), pp.505-512, 2001.
19.E. Omiecinski., "Alternative interest measures for mining associations, " IEEE Trans.Knowledge and Data Engineering,2003, 15:57–69.
20.N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal., "Discovering frequent closed itemsets for association rules, " In Proc. 7th Int. Conf. Database Theory (ICDT’99), 1999,pages 398–416.
21.J. Pei, J. Han, and R. Mao. , "CLOSET: An efficient algorithm for mining frequent closed itemsets, " In DMKD'00,2000.
22.O. R. Zaine, M. Antonie, and A. Coman, "Mammography Classification by an Association Rule-Based Classifier," Third Intl. ACM SIGKDD Workshop on Multimedia Data Mining (MDM/KDD'2002) in conjunction with Eighth ACM SIGKDD, pp.62-69, Edmonton, Alberta, Canada, 17-19 July 2002.
23.J. S. Park, M. S. Chen, and P. S. Yu, "An Effective hash-based Algorithm for Mining Association Rules," Proceddings of the ACM SIGMOD Conference on Management of Data - SIGMOD'95, pp.175-186, May 1995.
24.J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'03) ,2003.
25.Brijs T., Swinnen G., Vanhoof K., and Wets G., "The use of association rules for product assortment decisions: a case study," in: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, San Diego (USA), August 15-18, pp. 254-260,1999.
26.X. Wu, "Data mining: artificial intelligence in data analysis," Intelligent Agent Technology (IAT 2004). Proceedings. IEEE/WIC/ACM International Conference on 2004, 2004.
27.W.-Y. Kim, Y.-K. Lee, and J. Han, "CCMine: Efficient Mining of Confidence-Closed Correlated Patterns," Proc. 2004 Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD'04) ,2004
28.M. Zaki , C. Hsiao. ,“CHARM: An efficient algorithm for closed itemset mining,” In SDM'02. ,2002
29.Z. Zheng, R. Kohavi, and L. Mason, "Real World Performance of Association Rule Algorithms", Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining (KDD), New York, 2001.
30.http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html#assocSynData.
31.http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashMap.html.