跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴意中
研究生(外文):Yi-Chung Lai
論文名稱:遞迴環狀圖的容錯研究
論文名稱(外文):Fault Tolerance Measures in Recursive Circulant Graph on Forbidden Faulty Sets
指導教授:黃惠苓
指導教授(外文):Hui-Ling Huang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:40
中文關鍵詞:故障禁止集合遞迴環狀圖連結網路連接度容錯
外文關鍵詞:forbidden faulty setsrecursive circulant graphinterconnection networkconnectivityfault tolerance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
容錯分析一直是研究網路拓樸的重要課題,一般而言我們常使用節點與邊的連接度來衡量一個網路的容錯能力。在本文中,我們將介紹Esfahanian所提出故障禁止集合的概念,並在此假設下重新分析遞迴環狀圖更實際的容錯能力。遞迴環狀圖是由J. H. Park與K. Y. Chwa所提出的一種網路拓樸結構,它是近年來很受重視的一種拓樸結構,因為它擁有許多良好的拓樸性質,例如漢米爾頓迴圈、點對稱、最大點連通與邊連通性、可遞迴建構等等。我們將證明遞迴環狀圖在故障禁止集合的假設下,在c = 1且d = 2時,連接度可達4m - 4﹔在c = 1且d ≠ 2時,連接度可達4m - 2﹔在c = 2時,連接度可達4m﹔在c > 2時,連接度可達4m + 2。
Fault tolerance analysis is very important on interconnection network. In tradition, we use the connectivity of node and edge to measure the fault tolerance capability of interconnection networks. In this paper, we introduce the concept of the forbidden faulty sets that was proposed by Esfahanian. Under the restriction of forbidden faulty sets, we analyze the fault tolerance capability of the recursive circulant graphs. The recursive circulant graph has many good topology properties such as Hamiltonian cycle, node symmetric and can be recursively constructed. Finally, we will prove the connectivity of the recursive circulant with the restriction of forbidden faulty sets. The connectivity can achieve 4m – 4 if c = 1 and d = 2; 4m – 2 if c = 1 and d ≠ 2; 4m if c = 2; 4m + 2 if c > 2.
摘要 iv
英文摘要 v
誌謝 vi
目次 vii
圖目錄 xi
第一章 介紹 1
第二章 遞迴環狀圖的定義與符號 4
第三章 研究結果 7
第四章 結論 9
參考文獻 10
[1]S. B. Akers and B. Krishnamurthy, “The star graph: an attractive alternative to n-cube,” Proceedings of International Conference on Parallel Processing, pp. 393-400, Aug. 1989.
[2]T. Araki and Y. Shibata, “Pancyclicity of recursive circulant graphs,” Information Processing Letters, vol. 81, no. 4, pp. 187-190, 2002.
[3]T. Araki, “Edge-pancyclicity of recursive circulants,” Information Processing Letters, vol. 88, Issue 6, pp. 287-292, December 2003.
[4]D. K. Biss, “Hamiltonian decomposition of recursive circulant graphs,” Discrete Mathematics, vol. 214, Issues 1-3, pp. 89-99, March 2000.
[5]F. Chedid and R. Chedid, “A new variation on hypercubes with smaller diameter,” Information Processing Letters, vol. 46, no. 6, pp. 275-280, July 1993.
[6]W. K. Chen and M. Stallmann, “On embedding binary trees into hypercubes,” Journal of Parallel and Distributed Computing, vol. 24, pp. 132-138, 1995.
[7]K. Efe, “Embedding mesh of trees in the hypercube,” Journal of Parallel and Distributed Computing, vol. 11, no. 3, pp. 222-230, March 1991.
[8]A. El-Amawy, S. Latifi, “Properties and Performance of Folded Hypercubes,” IEEE Transactions on Parallel and Distributed Systems, vol.2, no. 1, pp. 31-42, January 1991.
[9]A. H. Esfahanian, “Generalized measures of fault tolerance with application to n-cube networks,” IEEE Transactions on Computers, vol. 38, no. 11, pp. 1586-1591, November 1989.
[10]G. Fertin and A. Raspaud, “Recognizing Recursive Circulant Graphs,” Electronic Notes in Discrete Mathematics, vol. 5, pp. 112-115, July 2000.
[11]JP Hayes, T. Mudge, QF Stout, S. Colley, and J. Palmer, “A microprocessor-based hypercube supercomputer,” IEEE Micro, vol. 6, pp. 6-17, October 1986.
[12]S. C. Hu and C. B. Yang, “Fault Tolerance on Star Graphs,” International Journal of Foundations of Computer Science, vol. 8, no. 2, pp. 127-142, 1997.
[13]S. Johnsson and C. Ho, “Optimum Broadcasting and Personalized Communication in Hypercubes,” IEEE Transactions on Computers, vol. 38, no. 9, pp. 1249-1268, September 1989.
[14]S. Kim and I. Chung, “Application of the special Latin square to a parallel routing algorithm on a recursive circulant network,” Information Processing Letters, vol. 66, Issue 3, pp. 141-147, May 1998.
[15]E. Leiss and H. Reddy, “Embedding complete binary trees into hypercubes,” Information Processing Letters, vol. 38, pp. 197-199, 1991.
[16]H. S. Lim, J.-H. Park and K. Y. Chwa, “Embedding trees in recursive circulants,” Discrete Applied Mathematics, vol. 69, Issues 1-2, pp. 83-99, August 1996.
[17]C. Micheneau, “Disjoint Hamiltonian cycles in recursive circulant graphs,” Information Processing Letters, vol. 61, Issue 5, pp. 259-264, March 1997.
[18]J. H. Park, K. Y. Chwa, “Recursive circulant: a new topology for multicomputer networks,” Proceeding of International Symposium on Parallel Architectures, pp. 73-80, 1994.
[19]J. H. Park, K. Y. Chwa, “Recursive circulants and their embeddings among hypercubes,” Theoretical Computer Science, vol. 244, no 1-2, pp. 35-62, August 2000.
[20]S. Ponnuswamy and V. Chaudhary, “Analysis of fault tolerance in Cayley digraphs using forbidden faulty sets.” International Conference on Parallel and Distributed Computing and Systems, pp. 346-349, 1994.
[21]Y. Rouskov, S. Latifi, and P. Srimani, "Conditional Fault Diameter of Star Graph Networks," Journal of Parallel and Distributed Computing, vol. 33, pp. 91-97, 1996.
[22]Y. Saad and M. H. Shultz, “Topological properties of hypercubes,” IEEE Transactions on Computers, vol. 37, no. 7, pp. 867-872, Judy 1988.
[23]C. H. Tsai, J. M. Tan and L. H. Hsu, “The super-connected property of recursive circulant graphs,” Information Processing Letters, vol. 91, Issue 6, pp. 293-298, September 2004.
[24]J. Wu and G. Guo, “Fault Tolerance Measures for m-Ary n-Dimensional Hypercubes Based on Forbidden Faulty Sets,” IEEE Transactions on Computers, vol. 47, Issue 8, pp. 888-893, August 1998.
[25]A. Wagner, “Embedding arbitrary binary trees in a hypercube,” Journal of Parallel and Distributed Computing, vol. 7, no. 3, pp. 503–520, 1989.
[26]X. Yang, D. J. Evans and G. M. Megson, “Maximum induced subgraph of a recursive circulant,” Information Processing Letters, vol. 95, Issue 1, pp. 293-298, July 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊