跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:華惟抒
研究生(外文):Wei-Shu Hua
論文名稱:馬克-詹德干涉式光纖磁力感測器之研究
論文名稱(外文):Research of Mach-Zehnder Fiberoptic Interferometric Magnetic Sensor
指導教授:張文俊張文俊引用關係王威智王威智引用關係
指導教授(外文):Wen-Chung ChangWei-Chih Wang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:67
中文關鍵詞:馬克-詹德干涉儀光纖磁力感測器磁致伸縮材料磁致伸縮效應
外文關鍵詞:Mach-Zehnder Fiberoptic InterferometricFiberoptic Magnetic SensorMagnetostrictive effectMagnetostrictive material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這些年來由於光纖、積體光學及光電半導體的迅速發展,使得光纖感測器系統已經廣泛地應用在各個工業上,除此之外,磁場對各種物質之效應的相關研究成果也已廣泛的應用到工業及醫學上,因此磁場的量測也成為一個相當重要的課題。
在這篇論文中我們將探討以Mach-Zehnder interferometer為架構的光纖磁力感測器,並以高導磁率的磁致伸縮材料( Magnetostrictive Material)作為磁場的感測元件,本研究在感測臂光纖採用被覆結構,在感測臂黏合具有磁致伸縮材料( Magnetostrictive Material)的物質,當感量臂之光纖受ㄧ外加磁場作用後,由於被覆材料的磁致伸縮效應(Magnetostrictive Effect),而使光纖發生形變,產生相位調製。磁致伸縮法簡單且實用,並且具有較高的靈敏度,因此磁致伸縮效應是目前光纖磁力感測器的主要方法。
磁致伸縮材料分為金屬玻璃及结晶金屬兩大類,金屬類的磁致伸縮材料有鎳(Ni)、鈷(Co)、鐵(Fe),以及這三種元素的金屬化合物。本實驗試著使用自行研發的磁致伸縮材料WCS-NG1與WCS-FS-1聚合物來做試驗,並相互比較不同材料反映在此系統的輸出干涉訊號及靈敏度。
以Mach-Zehnder interferometer為架構的光纖磁力感測器其體積小,靈敏度甚高,更可以在高溫下操作,是極佳的磁場感測器。
Owing to the optic fiber、integrated optics and optical semiconductor development so quickly these years, they lead to optics fiber sensor has been extensively applied in several industry. Besides, there are many research results to be related to magnetic field are now in widespread use in industry and medical science. Therefore, to measure magnetic field is an important issue nowadays.
We will focus on the structure of Mach-Zehnder interferometer of fiber magnetometer in this paper, and make use of high permeability magnetostrictive material as sensor component of magnetic field. This research is use mantle structure on sensing fiber, we bind some magnetostrictive material on sensing fiber, if we add extra magnetic field effect on sensing fiber, the magnetostrictive effect will cause sensing fiber produce deformation effect and phase changes. The magnetostrictive effect has many advantage of sensor. First, it is a simple and functional way to make a sensor. Second, it has high sensitivity. So, magnetostrictive effect is the main way to fabricate a fiber optics magnetometer.
Magnetostrictive materials are classified two parts, one part is metal glass the other one part is crystal metal. Metal magnetostrictive materials are Ni, Co, Fe, and these three element metal chemical compounds. We take dissimilar magnetostrictive materials to text, also create WCS-NG1 and WCS-FS-1 polymer as the sensing component then comparison each experiment result: frequency response, interference signal and sensitivity of this system.
The structure of Mach-Zehnder interferometer of fiber optics magnetometer has plenty merit: volume small, high sensitivity and can work at high temperature.
摘要
致謝
目錄
圖目錄
表目錄
第一章 簡 介
1.1 研究背景
1.2 研究動機
1.3 論文架構
第二章 光纖感測器原理
2.1光纖干涉儀
2.1.1 干涉現象
2.1.2 干涉儀介紹
2.2 馬克-詹得干涉儀系統之數學分析
2.2.1 光相位調製法
2.2.2 法拉第效應
2.2.3 干涉訊號之數學分析
2.2.4 光元件與系統的瓊斯矩陣推導
2.2.4.1 光纖之瓊斯矩陣 2.2.4.2 2X2 光纖偶合器的瓊斯矩陣
2.2.5 系統的雜訊與損失
第三章 光纖磁力感測器之架構與設計
3.1 光纖磁力感測器之數學分析
3.2 磁致伸縮材料之物性介紹
3.2.1 磁性的來源
3.2.2 磁場強度H與慈通密度B之間的關係 3.2.3 磁致伸縮效應介紹
3.2.4 磁致伸縮材料
3.2.4.1 鐵磁性的磁性原理
第四章 光纖磁力感測器之實驗步驟與結果
4.1 使用馬克-詹得干涉儀量測溫度變化之實驗
4.1.1 實驗架構與步驟
4.1.2 實驗結果與討論
4.2 使用馬克-詹得干涉儀量測磁場變化之實驗
4.2.1實驗架構與步驟
4.2.2實驗結果與討論
第五章 結論
5.1 結論
5.2 未來展望
參考文獻
附錄A
作者簡介
(1)A.J. Roger, “Optical fiber current measurement,” Optical Fiber Sensor Technology, pp. 421-439, 1995.
(2)G.P. Agrawal, “Fiber-optical communication systems,” John Wiley & Sons, Inc., New York, 1992.
(3)Eric Udd, “Fiber Optic Sensors,” pp. 1-8, John Wiley & Sons, Inc., New York, 1991.
(4)E. De La Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high- birefringence Sagnac loop,” Opt. Lett. 22, pp. 481-482, 1997.
(5)Libo Yuan, Farhad Ansari, “White-light interferometric fiber-optic distributed strain-sensing system,” Sensor and Actuator, A 63, pp. 171-181, 1997.
(6)N. N. Rezvani, R. O. Claus, and A. K. Sarrafzadeh, “Low-frequency fiber optic magnetic filed sensor,” Opt Eng, Vol. 31, No. 1, pp. 23-27, 1992.
(7)Ferrari, Pablo Garca, “Optical-fiber vibration sensor using step interferometry,” Applied Optics-OT, 35, pp. 5667-5669, 1996.
(8)T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. of Quantum Elec., Vol. QE-18, No. 4, pp. 626-665, 1982.
(9)Kopola, A. Thansandote, J. Chrostowski, S. S. Stuchly, “An Optical E-Field Sensor,” Precision Electro. Meas., 1990. CPEM’ 90 Conf, pp. 196-197, 1990.
(10)Yoichi Kitagawa, Akihiro Hayashi, “Fiber-optic sensor for distance and velocity measurements using speckle dynamics,” Applied Optics, 24, pp. 955-959, 1985.
(11)蔡孟燦, “光纖分佈式感測系統之氣體管線偵漏,” 國立中山大學電機工程學系碩士論文, 高雄市, 2002.
(12)Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric Current sensors using optical fiber,” Electron Lett., Vol. 17-155, pp. 523-525, 1981.
(13)Qianghua Li, Chunfei Li, Junqing Li, Bingsheng Liu, “Fiber-grating sensor using dynamic PZT modulation,” Opti, Comm., Vol. 211, pp. 129-133, 2002.
(14)Nobuaki Takahashi, Kazuto Yoshimura, Sumio Takahashi, Kazuo Imamura, “Development of an Optical Fiber Hydrophone with Fiber Bragg Grating” IEEE Ultrasonics, Vol. 38, pp. 581-585, 2000.
(15)安毓英與曾小東共著, “光學感測與測量,” 五南圖書, pp. 390-391, 民國93年
(16)Eric Udd, “Fiber Optic Sensors,” pp. 46-47, John Wiley & Sons, Inc., New York, 1991.
(17)K. Krakenes and K. Blotekjaer, “Effect of Laser Phase Noise in Sagnac interferometers,” IEEE J. Lightwave Tech., Vol.11, No. 4, pp. 643-653, 1993.
(18)A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization insensitive fiber optic Michelson interferometer,” Electron. Lett., Vol. 27, No.6, pp. 518-520, 1991.
(19)D. A. Jackson, A. Dandridge, and S. K. Sheem, “Measurements of small phase shifts using a single mode optical fiber interferometer,” Opt. Lett. 5, pp. 139-140, 1980.
(20)吳曜東, “光纖原理與應用,” 全華科技, pp. 2-23, 民國86年.
(21)Eric Udd, “Fiber Optic Sensors,” John Wiley & Sons, Inc., pp. 372-373, New York, 1991.
(22)F. Bucholtz, K. P. Koo, and A. Dandridge, “Effect of External Perturbations on Fiber-Optic Magnetic Sensors,” IEEE J. Lightwave Technol. LT-6, pp. 206-507, 1988.
(23)K. P. Koo, A Dandridge, A. B. Tveten, and G. H. Sigel, Jr., “A Fiber-Optic DC Magnetometer,” IEEE J. Lightwave Technol. LT-1, pp. 524-525, 1983.
(24)Eric Udd, “Fiber Optic Sensors,” John Wiley & Sons, Inc., pp. 383-384, New York, 1991.
(25)C. D. Butter and G. E. Hocker, “Fiber Optics Strain Gauge,” Appl. Opt. 17, pp. 2867-2869, 1978.
(26)黃忠良編譯, 山口 喬, 柳田博明, 岡本祥一, 近桂ㄧ郎共著, “磁性陶瓷,” 復漢出版社, pp. 8-10, 民國89年.
(27)鄭鎮東, “實用磁性材料,” 全華出版社, pp. 1-3 ~ 1-4, 民國88年.
(28)Cullity, B. D., Introduction to Magnetic Materials, Addison-Wesley Reading, MA, pp. 258-259, 1972.
(29)張煦, 李學養同譯, 近角聰信著, “磁性物理學,” 聯經出版社, pp.189-193, 民國71年.
(30)Cullity, B. D., Introduction to Magnetic Materials, Addison-Wesley Reading, MA, pp. 258-259, 1972.
(31)D. E. Gray, “American Institute of Physics Handbook,” 3rd, McGraw-Hill, 1972.
(32)F. M. Bozorth, “Ferromagnetism,” Van Nostrand, New York, 1951.
(33)Amnon Yariv, Harry V. Winsor, “Proposal for detection of magnetic field through magnetostrictive perturbation of optical fiber,” Optics Lett. Vol. 5, No. 3, pp. 88-89, Virginia, 1980.
(34)T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” Appl. Phys. Lett. 16, pp. 97-100, Japan, 1983.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top