跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明諺
研究生(外文):Ming-Yen Tsai
論文名稱:二維多階離散小波轉換架構之設計
論文名稱(外文):An Architecture of 2-Dimensional Multi-level Lifting-based Discrete Wavelet Transform
指導教授:陳順智陳順智引用關係
指導教授(外文):Shung-Chih Chen
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:47
中文關鍵詞:二維離散小波晶片設計
外文關鍵詞:2-dimensionalDiscrete Wavelet TransformVLSI
相關次數:
  • 被引用被引用:2
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
離散小波轉換(Discrete Wavelet Transform, DWT)是一種訊號轉換的演算法,其具有將訊號分解成不同頻帶的特性,因而被應用在多重解析度的訊號分析上,在影像壓縮技術中(如:JPEG2000與MPEG4),離散小波轉換也因為高壓縮比、低失真的特性,相當適合應用在低位元率的影像壓縮。
傳統離散小波轉換是以濾波器為主,由於所需的計算量相當龐大,因此,新一代的小波--上提式離散小波轉換(Lifting-based DWT)在1996年被提出。其低運算複雜度的特性,也使得上提式離散小波較傳統小波轉換更適合以硬體的方式實現,而影像標準JPEG 2000也以上提式離散小波為其主要的壓縮標準之一。
本篇論文中,我們分成兩部分,首先我們設計了一個二維的上提式離散小波轉換,利用線緩衝器來儲存行處理所需的中間值,使的行與列能同時處理,完成一張 的影像只需要 個時脈,此外針對小波轉換其二分之一取樣而造成的硬體使用率低的缺點,我們使用管線化與乘法器共用的特性來提高硬體使用率。第二個部分則是透過外部記憶體的使用與部分控制線路,使得我們的設計能處理的階數與影像的大小,均能參數化的調整。
最後以Verilog HDL 實現所提出的電路架構,再使用Synopsys的Design Compiler 進行邏輯合成,經過Apollo Layout Tools配合TSMC的0.35μm 1P4M CMOS製程技述自動合成出的佈局圖,其模擬出來的Gate count 為31093,工作時脈則為83MHZ,其Core Area為1740*1670 。
Discrete wavelet transform (DWT) is an algorithm with multi-resolution that can decompose data or signal into several components in different octave bands. In the image compression (eg. JPEG-2000 or MPEG-4), DWT can be apply on the low bit-rate compression because of its low distortion.
Traditionally, DWT has been implemented by filters which require a large size of storage and complex computations. In 1996, the lifting scheme [2], a new method for constructing biorthogonal wavelet was proposed for DWT. Since the lifting scheme has several advantages, such as less hardware resource and faster computation speed. The lifting-based DWT is also used in the newest image standard - JPEG-2000.
In this paper, we propose two parts of 2-D DWT architectures. In the first part, we present an non-separable architecture for 2-dimensional lifting-based DWT. Because of downsampling of the DWT, the hardware utilization is very low. In order to solve the problem, we propose a merged and line buffer architecture, which combines the horizontal and vertical DWT together. In the second part, we add external memory and some control circuits to make the architecture suitable for different decomposition levels. Parametric design makes our circuit that can process different size of image and decomposition levels.
The proposed VLSI architectures are described in Verilog HDL, and synthesized by the Synopsys’ Design Compiler. Finally, the layout of the design is generated automatically by the Avant! Apollo Layout Tools in a 0.35 1P4M CMOS technology. The Gate count number is 31093, and the clock frequency is 83MHZ.
摘 要 IV
ABSTRACT V
致 謝 VI
目 次 VII
圖 目 錄 IX
表 目 錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 相關研究 2
1.3 章節概要 3
第二章 離散小波轉換 5
2.1 前言 5
2.2 傳統離散小波轉換 6
2.3 上提式離散小波轉換 8
2.3.1 上提式離散小波正轉換 9
2.3.2上提式離散小波反轉換 10
2.3.3 與傳統離散小波之比較 12
2.4 一維多階離散小波轉換 13
2.5 二維離散小波轉換 14
2.5.1 二維一階離散小波轉換 14
2.5.2 二維多階離散小波轉換 16
2.5.3 應用於影像處理 17
第三章 5/3濾波器之二維上提式離散小波轉換架構 19
3.1 前言 19
3.2上提式5/3濾波器DWT之VLSI實現 20
3.3 直接實現 22
3.4 設計概念 23
3.4.1 二維影像之設計概念 23
3.4.2 列轉換 25
3.4.3 行轉換 26
3.5 二維小波轉換硬體架構 29
3.6 多階的設計 35
第四章 模擬與結果 38
4.1設計流程 38
4.2 效能與結果 38
4.3 模擬結果 40
第五章 結論 43
參考文獻 44
[1]S. Mallat, “Multifrequency channel decompositions of images and wavelet models,” IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, pp. 2091-2110, 1989.
[2]ISO/IEC ISO/IEC 15444-1 "Information Technology JPEG 2000 Image Coding System", 2000.
[3]I. Sodagar, H.-J. Lee, P. Hatrack, and Y.-Q. Zhang, “Scalable wavelet coding for synthetic/natural hybrid images,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 9, pp. 244-254, Mar. 1999.
[4]D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. Image Processing, Vol. 9, pp. 1158-1170, July 2000.
[5]K. Parhi and T. Nishitani, “VLSI architectures for discrete wavelet transforms,” IEEE Trans. VLSI Systems, Vol. 1, No. 2, pp. 191-202, 1993.
[6]Ming-Hwa Sheu, Ming-Der Shieh, Sheng-Wel Lin, “A VLSI architecture design with lower hardware cost and less memory for separable 2-D discrete wavelet transform”, Proceedings of the 1998 IEEE International Symposium on Circuits & Systems, Vol. 5, pp. 457-460, 1998.
[7]A. S. Lewis and G. Knowles, “VLSI architecture for 2-D Daubechies wavelet transform without multipliers,” Electronic Letters, Vol.27, No.2 ,pp 171-173, 1991.
[8]Jer Min Jou, Pei-Yin Chen, Ming-Shiang Liang, “A scalable pipelined architecture for separable 2-D discrete wavelet transform”, Design Automation Conference, Vol. 1, pp. 205 -208, 1999.
[9]Po-Yueh Chen, Tinku Acharya, Hamid Jarfarkhani, “A VLSI Architecture for Image Compression Using Wavelet Transform”, Proc. of Int. Conference on System Engineering, 1996.
[10]Po-Yueh Chen, “VLSI Architecture for Adaptive Image Compression Using Discrete Wavelet Transform”, Ph.D. Dissertation, University of Maryland at College Park, U.S.A., 1997.
[11]M. Ferretti, D.Rizzo, “Handling borders in systolic architectures for the 1-D discrete wavelet transform for perfect reconstruction”, IEEE Transactions on Signal Processing, Vol. 48, No. 5, pp. 1365-1378, May 2000.
[12]M. Vishwanath, R. M. Owens and M. J. Irwin, “VLSI architectures for the discrete wavelet transform,” IEEE Trans. Circuits and Systems, Vol. 42, No.5, pp. 305-316, 1995.
[13]Aleksander Grzeszczak, Mrinal K. Mandal, Sethuraman Panchanathan, “VLSI implementation of discrete wavelet transform,” IEEE Trans. VLSI Systems, pp.421-433, Dec. 1996.
[14]Joon Tae Kim; Yong Hoon Lee; T. Isshiki, ,H. Kunieda, “Scalable VLSI architectures for lattice structure-based discrete wavelet transform”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 45, No. 8, pp. 1031-1043, Aug. 1998.
[15]T.C. Denk,; K.K. Parhi, “VLSI architectures for lattice structure based orthonormal discrete wavelet transforms”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 44, No. 2, pp. 129-132, Feb. 1997.
[16]C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete and continuous wavelet transforms: From single chip implementations to mappings on SIMD array computers,” IEEE Trans. Signal Processing, Vol. 43, No.5, pp. 759-771, 1995.
[17]F. Marino, D. Guevorkian, and J. T. Astola, “Highly efficient high-speed/low-power architectures for the 1-D discrete wavelet transform,” IEEE Trans. Circuits and Systems-Part II, Vol. 47, No. 12, pp. 1492-1502, 2000.
[18]W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal wavelet,” Applied and Computational Harmonic Analysis, Vol. 3, pp. 186-200, 1996.
[19]Hongyu Liao, Mrinal K. Mandal Bruce and F. Cockburn, “Novel architectures for the lifting-based discrete wavelet transform,” IEEE CCECE 2002, 2002. Canadian Conference on Electrical and Computer Engineering, Vol.2, pp.1020-1025, 2002.
[20]J. M. Jou, Y.-H. Shiau, and C.-C. Liu, “Efficient VLSI architectures for biorthogonal wavelet transform by filter bank and lifting scheme,” in Proc. of IEEE Symposium on Circuits and Systems, pp. 529-532, May 2001.
[21]C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Lifting Based Discrete wavelet Transform Architecture for JPEG2000,” in Proc. of IEEE Symposium on Circuits and Systems, pp. 445-448, May 2001.
[22]Cheng-Yi Xiong, Jin-Wen Tian, and Jian Liu“Efficient High-Speed/Low-Power Line-Based Architecture for Two-Dimensional Discrete Wavelet Transform Using Lifting Scheme” IEEE Trans. Circuits & Syst. for Video Technology, Vol. 16, No. 2, Feb. 2006.
[23]Bing-Fei Wu and Chung-Fu Lin, “A High-Performance and Memory-Efficient Pipeline Architecture for the 5/3 and 9/7 Discrete Wavelet Transform of JPEG2000 Codec,” IEEE Trans. Circuits & Syst. for Video Technology, Vol. 15, No. 12, Dec. 2005.
[24]K. Andra, C. Chakrabarti, T. Acharya, “A VLSI Architecture for Lifting-based Wavelet Transform,” IEEE Workshop on Signal Processing Systems, pp. 70 -79, 2000.
[25]戴顯權,資料壓縮,紳藍出版社,民90年。
[26]陳培殷,資料壓縮概論,滄海書局,民90年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top