跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳勝哲
研究生(外文):Sheng-Che Wu
論文名稱:適用於超寬頻(UWB)通訊之新型印刷式天線設計
論文名稱(外文):The New Design of the Printed Antenna with Ultra-Wideband Operation
指導教授:陳文山陳文山引用關係楊開南楊開南引用關係
指導教授(外文):Wen-Shan ChenKai-Nan Yang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:82
中文關鍵詞:超寬頻印刷式單極天線共面波導饋入微帶線饋入抑制5.15GHz~5.825GHz頻段
外文關鍵詞:printed monopole antennaultra-widebandmicrostrip-line-feedcoplanar-waveguide feed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:2
在本論文中主要是提出適用於超寬頻印刷式單極天線設計,並且針對所提出的天線特性去做分析與探討。本論文中所設計的印刷式單極天線分別採用共面波導饋入及微帶線饋入兩種方式,其天線結構形狀皆採用愛心形狀,而愛心形狀單極天線是由一個大半圓和兩個小半圓所組成。首先所提到的共面波導饋入印刷愛心形狀天線之超寬頻頻帶操作設計,適當的間隙距離也是重要變數,而此間隙距離會影響天線阻抗匹配,使得此天線阻抗頻寬可達137%,且具有超寬頻、良好增益與輻射場形等優點。接下來提出在愛心形狀結構上挖環形槽孔抑制5.15GHz~5.825GHz頻段。最後提出微帶線饋入愛心形狀結構天線,其頻寬也達到超寬頻效果,且此天線阻抗頻寬可達131%。本論文除了針對天線設計能符合在規定的頻帶範圍之外,也顯示出天線良好輻射場形及增益。
In this paper, the designs and characteristics of printed monopole antenna for ultra-wideband applications are proposed and investigated. In the context, the designs of printed antennas adopt the feed structure of microstrip-line-feed and coplanar-waveguide feed, and the configuration of the proposed antennas is heart shape. A shape of the heart monopole antenna consists of a big half-disk and two small half-disks. In the first instance the CPW fed printed heart antenna for ultra-wideband applications, the fitting feed gap is key parameter, which due to the sensitivity of the impedance matching. As a result of the structure, the impedance bandwidth of the proposed antenna can achieve 137% and have the advantages of ultra-wideband, good antenna gain and good radiation pattern. In the next instance we propose the printed heart antenna with a ring-section slot that reject the 5.15 to 5.825 GHz frequency band. In the final instance we propose the microstrip-line-feed printed heart antenna that can also achieve the requirement of the ultra-wideband application. And the impedance bandwidth of the proposed antenna can achieve 131%. The antenna performance we design not only fit the regular frequency band, but also show good radiation pattern and gain.
摘 要
ABSTRACT
致 謝
目 次
表 目 錄
圖 目 錄
第一章 序論
1.1 簡介
1.2 論文內容提要
第二章 共面波導饋入印刷愛心形狀超寬頻天線設計
2.1 簡述
2.2 天線設計說明
2.2.1 超寬頻天線簡介
2.2.2 共面波導饋入結構設計
2.3 天線實驗結果與討論
第三章 帶拒共面波導饋入印刷愛心形狀天線設計
3.1 簡述
3.2 天線設計說明
3.3 天線實驗結果與討論
第四章 微帶線饋入印刷愛心形狀超寬頻天線設計
4.1 簡述
4.2 天線設計說明
4.2.1 微帶天線簡介
4.2.2 微帶線饋入結構設計
4.3 天線實驗結果與討論
第五章 結 論
參考文獻
[1]F. Cali, M. Conti, E. Gregori, “IEEE 802.11 Protocol:Design and Performance Evaluaion of an Adaptive Backoff Mechanism,” IEEE J. on Sel. Areas in Comm., vol. 18, no. 9,pp. 1774-1786, 2000.
[2]G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE J. on Sel. Areas in Comm., vol. 18, No. 3, pp. 535-547, 2000.
[3]H.S. Chhays and S. Gupta, “Performance Methods in the IEEE 802.11 MAC Protocol,” ACM/Baltzer Wireless Net-works, vol. 3, pp 217-234, 1997.
[4]IEEE 802.16 Working Group on Broadband Wireless Access Standards, http://grouper.ieee.org/groups/802/16/index.html.
[5]IEEE 802.15 Working Group for Wireless Personal Area Networks, http://grouper.ieee.org/groups/802/15/index.html.
[6]J. C. Haartsen, “The Bluetooth radio system,” IEEE Personal Communications, vol. 7, pp. 28-36, Feb. 2000.
[7]FCC Report and Order for Part 15 acceptance of Ultra Wideband (UWB) systems from 3.1-10.6 GHz, February, 2002, FCC website
[8]C. P. Wen, “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-17, no. 12, pp. 1087-1090, December, 1969.
[9]H. C. Liu, T. S. Horng and N. G. Alexopoulous, “Radiation of printed antennas with a coplanar waveguide feed,” IEEE Transactions on antennas and propagation, vol. 43, no. 10, pp. 1143-1148, 1995.
[10]J. W. Greiser, “Coplanar stripline antenna,” Microwave Journal, vol. 21, pp. 47-49, 1976.
[11]J. Liang, L. Guo, C. C. Chaiu et al., “CPW-fed circular disc monopole antenna for UWB applications”, IEEE International Workshop on Antenna Technology, pp. 505-508, 2005.
[12]S. Y. Suh, W. Stutzman, W. Davis et al., “A novel CPW-fed disc antenna”, IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 2919-2922, 2004.
[13]T. Yang and W. A. Davis, “Planar half-disk antenna structures for ultra-wideband communications”, IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 2058-2511, 2004.
[14]A. A. Omar and Y. L. Chow, “A Versatile Moment Method Solution of the Conventional and Modified Coplanar Waveguide T-junctions,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 4, pp. 687-692, April, 1993.
[15]T. Hirose, K. Makiyama, K. Ono, T. M. Shimura, S. Aoki, Y. Ohashi, S. Yokokawa, and Yu Watanabe, “A Flip-chip MMIC Design with Coplanar Waveguide Transmission Line in the W-band,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2276-2282, December, 1998.
[16]R. L. Peterson and R. F. Drayton, “A CPW T-resonator Technique for Electrical Characterization of Microwave Substrates,” IEEE Microwave and Wireless Components Letters, vol. 12, no. 3, pp. 90-92, March, 2002.
[17]K. Chung, J. Kim and J. Choi, “Wideband Microstrip-Fed Monopole Antenna Having Frequency Band-Notch Function,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 11, pp. 766-768, November, 2005.
[18]T. Dissanayake and K. P. Esselle, “Design of Slot Loaded Band-Notched UWB Antennas,” IEEE Antennas and Propagation Society International Symposium, vol. 1B, pp. 545-548, July, 2005.
[19]A. Kerkhoff and H. Ling, “A Parametric Study of Band-Notched UWB Planar Monopole Antennas,” IEEE Antennas and Propagation Society International Symposium, vol. 2, pp.1768-1771, June, 2004.
[20]H. Yoon, H. Kim, K. Chang et al., “A Study on the UWB Antenna with Band-rejection Characteristic,” IEEE Antennas and Propagation Society International Symposium, vol. 2, pp.1784-1787, June, 2004.
[21]W. S. Lee, W. G. Lim and J. W. Yu, “Multiple Band-Notched Planar Monopole Antenna for Multiband Wireless Systems,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 9, pp. 576-578, September, 2005.
[22]J. Liang, C. C. Chiau, X. Chen et al., “Study of a Printed Circular Disc Monopole Antenna for UWB Systems,” IEEE Transactions on antennas and propagation, vol. 53, no. 11, pp. 3500-3504, November, 2005.
[23]J. Liang, C. C. Chiau, X. Chen et al., “Printed circular disc monopole antenna for ultra-wideband applications,” Electronics Letters, vol. 40, no. 20, September, 2004.
[24]G. W. Garvin, R. E. Munson, L. T. Ostwald and K. G. Schroeder, “Missile base mounted microstrip antennas,” IEEE Transactions on antennas and propagation, vol. 22, pp. 604-610, 1977.
[25]G. G. Sanford, “Conformal microstrip phased array for aircraft tests with ATS-6,” IEEE Transactions on antennas and propagation, vol. 26, pp. 624-646, 1978.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top