跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高啟勝
研究生(外文):C.S.Kao
論文名稱:有關低摻雜三維鰭式場效應電晶體具二氧化矽絕緣結構之次臨界行為解析模型
論文名稱(外文):A 3D Analytical Modeling of Subthreshold Behavior for Undoped SOI FinFET
指導教授:江德光
指導教授(外文):T.K.Chiang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:57
中文關鍵詞:鰭式場效應電晶體
外文關鍵詞:FinFET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:0
摘  要
近來鰭式場效應電晶體(FinFET),已獲得高密切注意,由於具備(1)降低短通道效應(Reduce short channel effect)(2)高轉導(High transconductance)(3)低功率消耗(Low power consumption)(4)減低熱載子效應(Reduce hot carrier effect)(5)改善次臨界斜率區域汲極電流對閘極電壓斜率變化(6)增強閘極對通道之控制能力與抑制通道貫穿效應所產生之漏電流等優點,已有取代傳統平面傳導之金氧半場效電晶體(bulk MOSFET)成為低功率(Low power),高密度(High density)之積體電路中最具發展力之元件。由於鰭式場效應電晶體被研發應用於通訊電路及微波領域中,是故因應超高密度積體電路(VLSI)之小幾何元件模型之需求,傳統一維分析模型及程式已無法精確預測元件次臨界特性,於是發展出適合深次微米(deep-submicrometer)範圍之小幾何結構效應(Small-geometric effect)元件之解析模型。
為了能夠以最低成本(Low cost),及最高的效率(High efficiency)發展出鰭式場效應電晶體(FinFET)的電性解析模式---尤其是應用於低功率(Low power)數位積體電路中之次臨界行為(Subthreshold behavior)的分析,於是吾人乃根據分離變數(Separate variables)之超疊代法(Superposition method)以解出具實體物理意義的三維帕森方程式(Poisson’s equation),進而探討次臨界微米(deep-submicrometer)領域中元件之次臨界行為。吾人以此為基礎,推導出該元件之次臨界行為解析模型。由此模型可以準確地預測表面電位之變化、臨界電壓的衰減、次臨界斜率的衰變和汲極電壓引發通道電位降低之效應。而有效地預測出當積體電路密度提高時,導致元件邁向深次微米領域時所能接受的最小尺寸(Ultimate scaling limitation),然而節省了前瞻元件製程(Device process)所耗費的成本,並提供了小幾何元件模擬(small device modeling)的基礎。
本論文旨在發展出適用於深次微米(deep-submicrometer)範圍之有關低摻雜鰭式場效應電晶體(updoped FinFET)次臨界行為之三維解析模型,藉以改變不同幾何元件結構參數(Device structure parameters)及電路參數(Electrial parameters)加以深入探討元件於深次微米領域之行為,為往後微小幾何元件分析奠定基礎,有助於日後元件朝向深次微米發展時,基本模擬資料庫之建立。
關鍵字:汲極電壓引發通道位能障壁降低之效應、臨界電壓的衰變、次臨界電流隨著閘極電壓之改變率的衰變、短通道效應、鰭式場效應電晶體
ABSTRACT
In recent years, the FinFET has attracted a lot attention and become a potential candidate for the VLSI due to the following advantages:(1)Reduced short channel ef-fects(2)High transconductance(3)Low power consumption(4)Reduced hot carrier ef-fects(5)Improved subthreshold swing(6)Be able to enhance the function of gate on channel conductivity control and release the punch-through effect. The integration of billions of transistors in a single chip beyond the year 2003 will require that device di-mensions be reduced to below deep-submicrometer levels. However, as device dimen-sion are reduced, the conventional one-dimensional electrostatic effects can not afford to predict precisely the performance of the FinFET due to the small-geometric effects.
So, it becomes more important to provide the exact model of the subthreshold be-havior by considering the 3-D effects as the device dimension is pushed into the deep-submicrometer regime for the application of the high density of the VLSI circuits. In this thesis, we use the superposition method to derive the three-dimensional potential distribution of the silicon film for the FinFET. Based on the three-dimensional potential analysis, the surface channel potential would be obtained. With the surface channel po-tential and operation of the FinFET, the three-dimensional device-physics-based ana-lytical models are developed for subthreshold conduction in uniformly undoped density of FinFET.
For undoped FinFET, the small-geometric effects to degrade the performance of the subthreshold behavior will be observed. Meanwhile, By considering the surface po-tential, the threshold voltage roll-off, drain-induced barrier lowering(DIBL)effect, and subthreshold slope degradation are precisely predicteded. Ultimately, the minimum ac-ceptable channel length(the scaling limitation) would be discussed with the various de-vice parameters for the FinFET.
Contents

摘  要 i
A 3D Analytical Modeling Subthreshold Behavior for Undoped SOI FinFET iii
ABSTRACT iii
Acknowledgements iv
Contents ix
List of Tables xi
List of Figures xii
Chapter 1 1
MOTIVATION AND INTRODUCTION 1
1.1 MOSFET’s Review 1
1.2 FinFET’s Review 3
1.3 Motivation 5
1.4 Organization 6
Chapter 2 10
APSYS Overview and Device Configurations 10
2.1 Fundamentals 10
2.2 Device Configurations 15
Chapter 3 19
FinFET’s-Subthreshold Behavior Models for Undoped SOI FinFET’s 19
3.1 Motivation 19
3.2 Model Derivation for Undoped SOI FinFET 20
3.2.1 Three-Dimensional Potential Expression 20
3.2.2 Small-geometry Threshold Voltage Model 32
3.2.3 Small-geometry DIBL Model 36
3.2.4 Small-geometry Subthreshold Swing Model 39
CHAPTER 4 42
CONCLUSIONS AND FUTURE WORKS 42
4.1 Conclusions 42
4.1.1 FinFET 42
4.2 Future works 43
REFERENCES 45
PUBLICATIONS LIST 56
作者簡介 57
REFERENCES
[1]J. J. Liou, A. Ortiz-Conde, and F. Garcia-Sanchez, “Analysis and Design of MOSFETs Modeling, Simulation, and Parameter Extraction”, Kluwer Academic Publishers.
[2]J. S. Yuan and J. J. Liou, “Semiconductor Device Physics and Simula-tion,”Plenum Publishing Corporation, May, 1998.
[3]G. Baccarani and S. Reggiani, “A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects,” IEEE Trans. Electron Devices, vol. 46, Issue: 8 , Aug., 1999, pp. 1656 – 1666.
[4]T. K. Chiang, “An analytical (classical) subthreshold behavior models for the symmetrical fully-depleted SOI double-gate MOSFET,” is ac-cepted by Journal of the Chinese Institute of Engineers for 2003.
[5]X. Liu, J. Kang, L. Sun, R. Han, and Y. Wang, “Threshold voltage model for MOSFETs with high-k gate dielectrics,” IEEE Electron Device Lett., vol.23 , Issue: 5 , May, 2002, pp.270 – 272.
[6]T. Tonaka, H. Horie, S. Ando, and S. Hijiya, “Analysis of p+ poly Si-double-gate thin-film SOI MOSFETS,” in IEDM Tech. Dig.,1991, pp. 683-686.
[7]J. Brini, M. Benachir, G. Ghibaudo, and F. Balestra, “Threshold voltage and subthreshold slope of the volume-inversion MOS transistor,” in Proc. Inst. Elect. Eng.,vol. 138, 1991, pp. 133-136.
[8]D. J. Frank, S. E. Laux, and M. V. Fischetti, “Monte Carlo simulation of a 30nm dual-gate MOSFET: How short can Si go?,” in IEDM Tech. Dig., 1992, pp.553-556.
[9]S. Venkatesan, G. W. Neudeck, and R. F. Pierret, “Dual-gate operation and volume inversion in n-channel SOI MOSFET’s,” IEEE Electron De-vice Lett., vol. 13,1992, pp. 44-46.
[10]R.-Y. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: From bulk to SOI to bulk,” IEEE Trans. Electron Devices, vol. 39, 1992, pp. 1704-1710.
[11]K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 40, 1993, pp.2326-2329.
[12]K.-W. Su and J. B. Kuo, “A nonlocal impact ionization/lattice tempera-ture model for VLSI double-gate ultrathin SOI NMOS devices,” IEEE Trans. Electron Devices, vol. 44, 1997, pp. 324-330.
[13]K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, Y. Arimoto, and T. Ito, “Analytical surface potential expression for thin-film double-gate SOI MOSFET’s,” Solid-State Electron., vol. 37, 1994, pp. 327-332.
[14]T. Tanaka, K. Suzuki, H. Horie, and T. Sugii, “Ultrafast operation of Vth-adjusted p+-n+ double-gate SOI MOSFET’s,” IEEE Electron De-vice Lett., vol. 15,1994, pp. 386-388.
[15]K. Suzuki, T. Tanaka, and T. Sugii, “Analytical threshold voltage model for short channel n+-p+ double-gate SOI MOSFET’s,” IEEE Trans. Electron Devices, vol.43,1996, pp. 732-737.
[16]S. H. Tang, P. Xuan, J. Bokor, and C. Hu, “Comparison of short-channel effect and offstate leakage in symmetric vs. asymmetric double gate MOSFETs,”2000 IEEE International SOI Conference, 2-5 Oct., 2000, pp. 120 – 121.
[17] H.-S. P. Wong, D. J. Frank, and P. M. Solomon, “Device design con-siderations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation,” Electron De-vices Meeting, 1998. '98 International IEDM Technical Digest., 6-9 Dec., 1998, pp. 407 – 410.
[18]L. Chang, S. Tang, T.-J. King, J. Bokor, and C. Hu, “Gate length scaling and threshold voltage control of double-gate MOSFETs,” Electron De-vices Meeting, 2000. International, IEDM Technical Digest. 10-13 Dec., 2000, pp. 719 – 722.
[19]X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E.Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor,and C. Hu, “Sub 50-nm FinFET: PMOS,” Electron De-vices Meeting, 1999. International, IEDM Technical Digest. 5-8 Dec., 1999, pp. 67 – 70.
[20]D. J. Frank, S. E. Laux, and M.V. Fischetti, “Monte Carlo simulations of p- and n-channel dual-gate Si MOSFET's at the limits of scaling,” Elec-tron Devices, IEEE Transactions on , Volume: 40 , Issue: 11 , Nov., 1993, pp. 2103.
[21]Y. Tosaka, K. Suzuki, and T. Sugii, “Scaling-parameter-dependent model for subthreshold swing S in double-gate SOI MOSFET's,” IEEE Electron Device Letters, , vol. 15 , Issue: 11 , Nov., 1994, pp. 466 – 468
[22]H.-S. P. Wong, D. J. Frank, Y. Taur, and J. M. C. Stork, “Design and performance considerations for sub-0.1 m double-gate SOI MOSFETs,” in IEDM Tech. Dig., 1994, pp. 747-750.
[23]T. Su, J. P. Denton, and G. W. Neudeck, “New planar self-aligned dou-ble fully depleted P-MOSFETs using epitaxial lateral over-growth (ELO) and selectively grown source/drain (S/D),” in IEEE Int. SOI Conf., Oct., 2000, pp. 110-111.
[24]J.-H. Lee, G. Taraschi, A. Wei, T. A. Langdo, E. A. Fitzgerald, and D. A. Antoniadis, “Super self-aligned double (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy,” in IEDM Tech. Dig., 1999, pp. 71-74.
[25]H.-S. P. Wong, K. K. Chan, and Y. Taur, “Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel,” in IEDM Tech. Dig., 1997, pp. 427-430.
[26]D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, R.Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET –a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, Dec., 2000, pp. 2320-2325.
[27]D. M. Fried, A. P. Johnson, E. J. Nowak, J. H. Rankin, and C. R. Willets, “A sub-40 nm body thickness N-type FinFET,” in Proc. Device Res. Conf., 2001, pp. 24-25.
[28]X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, R.Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50 nm P-channel FinFET,” IEEE Trans. Electron Devices, vol. 48, May, 2001, pp. 880-886.
[29]Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J.Bokor, and C. Hu, “Sub-20 nm CMOS FinFET technolo-gies,”Electron Devices Meeting, 2001. International IEDM Technical Digest. 2-5 Dec.,2001, pp. 19.1.1 - 19.1.4.
[30]J. Kedzierski, D.M. Fried, E. J. Nowak, T. Kanarsky, J. H. Rankin, H. Hanafi,W. Natzle, D. Boyd, Y. Zhang, R. A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C.P. Willets, A. Johnson, S. P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B. A.Rainey, P. E. Cottrell, M. Ieong, and H.-S. P. Wong, “High-performance symmetric-gate and CMOS-compatible Vt asymmetric-gate FinFET devices,” Electron Devices Meeting, 2001. In-ternational, IEDM Technical Digest. , 2-5 Dec., 2001, pp.19.5.1 - 19.5.4.
[31]Y.-K. Choi, T.-J. King, and C. Hu, “Spacer FinFET: nano-scale CMOS technology for the terabit era,” 2001 International Semiconductor Device Research Symposium, 5-7 Dec., 2001, pp. 543 – 546.
[32]S. H. Tang, L. Chang, N. Lindert, Y.-K. Choi, W.-C. Lee, X. Huang, V.Subramanian, J. Bokor, T.-J. King, and C. Hu, “FinFET-a quasi-planar double-gate MOSFET,” Solid-State Circuits Conference, 2001. Digest of Technical Papers.2001 IEEE International, ISSCC. 5-7 Feb., 2001, pp. 118 - 119, 437.
[33]N. Lindert, Y.-K. Choi, L. Chang, E. Anderson, W.-C. Lee, T.-J. King, J.Bokor, and C. Hu, “Quasi-planar FinFETs with selectively grown ger-manium raised source/drain,”2001 IEEE International, SOI Conference, 1-4 Oct., 2001, pp. 111 – 112.
[34]E. Liu; C. Lin; X. Liu; and R. Han, “Simulation of 100nm SOI MOSFET with FINFET structure,”2001 Solid-State and Integrated-Circuit Tech-nology. Proceedings on 6th International Conference, vol. 2, 22-25 Oct., 2001, pp. 883 – 886.
[35]F.-L. Yang, H.-Y. Chen, F.-C. Chen, Y.-L. Chan, K.-N. Yang, C.-J. Chen, H.-J.Tao, Y.-K. Choi, M.-S. Liang, and C. Hu, “35 nm CMOS FinFETs,” VLSI Technology,2002. Digest of Technical Papers. 2002 Symposium on , 11-13 June 2002, pp. 104 –105.
[36]J. G. Fossum, M. M. Chowdhury, V. P. Trivedi, T.-J. King, Y.-K. Choi, J. An, and B. Yu, “Physical insights on design and modeling of nanoscale FinFETs,” Electron Devices Meeting, 2003. IEEE International, IEDM '03 Technical Digest. 8-10 Dec., 2003, pp. 29.1.1 - 29.1.4.
[37]M. Kondo, R. Katsumata, A. Hideaki, T. Hamamoto, S. Ito, N. Aoki, and T.Wada, “A FinFET design based on three-dimensional process and de-vice simulations,”Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. International Conference on, 3-5 Sept., 2003, pp. 179 – 182.
[38]G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, and E.C.-C. Kan, “FinFET design considerations based on 3-D simulation and analytical modeling,” IEEE Transactions on Electron Devices, vol. 49, Issue: 8, Aug., 2002, pp. 1411 – 1419.
[39]C. P. Auth and J. D. Plummer, “A simple model for threshold voltage of surrounding-gate MOSFET's,” IEEE Transactions on Electron Devices, vol.45, Issue: 11 , Nov., 1998, pp. 2381 – 2383.
[40]S.-H. Oh, D. Monroe, and J.M. Hergenrother, “Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, sur-rounding-gate MOSFETs,” IEEE Electron Device Letters, vol. 21, Issue: 9, Sept., 2000, pp. 445 – 447.
[41]A. Kranti, S. Haldar, and R. S. Gupta, “A two-dimensional analytical model for thin film fully depleted surrounding gate (SGT) MOSFET,” Microwave Conference, 2000 Asia-Pacific , 3-6 Dec., 2000, pp. 880 – 883.
[42]C. P. Auth and J. D. Plummer, “Vertical, fully-depleted, surrounding gate MOSFETs on sub-0.1 μm thick silicon pillars,” Digest. 54th Annual, Device Research Conference, 1996. 24-26 June, 1996, pp. 108 – 109.
[43]Y. Taur, L. H. Wann, and D. J. Frank,”25 nm CMOS design considera-tions,” in IEDM Tech. Dig., 1998, pp.789-792
[44]Y. Taur, D. A. Buchanan, W. Chen, D.J. Frank, K.E. Ismail, S.-H Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J.C. Wann, S.J. Wind, and H.-SP. Wong, ”CMOS scaling into the nanometer regime,” Proc. IEEE,vol.85, 1997, pp.486-504.
[45]D. J. Frank, R. H. Dennard, and E. Nowak,”Device scaling limits of Si MOSFETs and their application dependences,” Proc. IEEE,vol.89, 2001, pp.259-288.
[46]Y. Taur,”CMOS scaling beyond 0.1 :how short can Si go?,”in Proc. Symp. VLSI Technology, 1999, pp.6-9.
[47]C. H. Wang, K. Noda, T. Tanaka, M. Yoshida, and C. Hu,”A compara-tive study of advanved MOSFET concepts,” IEEE Trans. Electron De-vices, vol.43, 1996, p.1742-1753.
[48]D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. King, J Bokor, and C. Hu,”A folded-channel MOSFET for deep-sub-micro era,” in IEDM Tech. Dig., 1998, pp.1032-1034.
[49]D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. King, J Bokor, and C. Hu,”FinFET-A self-aligned double-gate MOSFET scalable to 20nm,” IEEE Trans. Electron devices, vol. 47, 2000, pp.2320-2325.
[50]X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu,”Sub-50nm FinFET:PMOS,” in IEDM Tech. Dig., 1999, pp. 67-70.
[51]X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu,”Sub-50nm P-channel FinFET,” IEEE Trans. Electron Device,vol.48, 2001, pp.880-886.
[52]D. M. Fried, A.P. Johnson,E.J. Nowak, J.H. Rankin, C.R. Willets,”A sub-40 nm body thickness N-type FinFET,” in Proc. Device Res. Conf.,2001 pp.24-25.
[53]Yang-Kyu Choi, Tsu-Hae King, and C. Hu,”Nanoscale CMOS Spacer FinFET for the Terabit Era,”IEEE Electron device Letter, vol.23, 2002, pp.25-27.
[54]N. Lindert, L. Chang, Y.-K. Choi, E. H. Anderson, W.-C. Lee, T.-J. King, J. Boker, and C. Hu,”Sub-60nm Quasi-planar FinFETs fabricated using a simplified process,”IEEE Trans Electron Devices, vol.22, 2001, pp.487-489.
[55]Y.-K. Choi, N. Lindert, P.Xuan, S. tang, D. Ha, E. Anderson, T.-J. King, J.Bokor, and C. Hu,”Sub-20nm CMOS FinFET Technology,” in IEDM Tech. Dig, 2001, pp.421-424.
[56]Pei, G.; Kedzierski, J.; Oldiges, P.; Ieong, M.; Kan, E.C.-C, “FinFET de-sign considerations based on 3-D simulation and analytical model-ing” IEEE Transactions on Electron Devices, vol. 49 Issue: 8 , Aug., 2002, pp. 1411 -1419.
[57]X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, R. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50 nm P-channel FinFET,” IEEE Trans. Electron Devices, vol. 48, May, 2001, pp. 880–886.
[58]X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, R. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50 nm P-channel FinFET,” IEEE Trans. Electron Devices, vol. 48, May, 2001, pp. 880–886.
[59]Te-Kuang Chiang., “The modeling of the short channel devices in deep- submicrometer range: including GaAs MESFET's, Si-SOI MESFET's, SOI MOSFET's and double-gate SOI MOSFET's” ph. D. dissertation, Department of Electrical Engineering, National Cheng-Kung University, R.O.C. , 1998.
[60]C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, “A compara-tive study of advanced MOSFET concepts,” IEEE Trans. Electron De-vices, vol. 43, no. 10,Oct., 1996, pp. 1742-1753.
[61]Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J.Bokor, and C. Hu, “Sub-20 nm CMOS FinFET technolo-gies,”Electron Devices Meeting, 2001. International, IEDM Technical Digest. 2-5 Dec, 2001, pp. 19.1.1 - 19.1.4.
[62]J. Kedzierski, D. M. Fried, E. J. Nowak, T. Kanarsky, J. H. Rankin, H. Hanafi, W. Natzle, D. Boyd, Y. Zhang, R. A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C.P. Willets, A. Johnson, S. P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B. A.Rainey, P. E. Cottrell, M. Ieong, and H.-S. P. Wong, “High-performance symmetric-gate and CMOS-compatible Vt asymmetric-gate FinFET devices,” Electron Devices Meeting, 2001. In-ternational, IEDM Technical Digest. , 2-5 Dec., 2001, pp.19.5.1 - 19.5.4.
[63]Y.-K. Choi, T.-J. King, and C. Hu, “Spacer FinFET: nano-scale CMOS technology for the terabit era,” 2001 International, Semiconductor De-vice Research Symposium, 5-7 Dec., 2001, pp. 543 – 546.
[64]S. H. Tang, L. Chang, N. Lindert, Y.-K. Choi, W.-C. Lee, X. Huang, V. Subramanian, J. Bokor, T.-J. King, and C. Hu, “FinFET-a quasi-planar double-gate MOSFET,”2001 IEEE International Solid-State Circuits Conference, 5-7 Feb., 2001, pp. 118 - 119.
[65]N. Lindert, Y.-K. Choi, L. Chang, E. Anderson, W.-C. Lee, T.-J. King, J. Bokor, and C. Hu, “Quasi-planar FinFETs with selectively grown ger-manium raised source/drain,” IEEE International , SOI Conference, 1-4 Oct., 2001, pp. 111 – 112.
[66]D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. King, J. Bokor, and C. Hu, “A folded-channel MOSFET for deep-sub-micro era,” in IEDM Tech. Dig., 1998, pp. 1032-1034.
[67]X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, R.Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50 nm P-channel FinFET,” IEEE Trans. Electron Devices, vol. 48, May, 2001, pp. 880-886.
[68]D. M. Fried, A. P. Johnson, E. J. Nowak, J. H. Rankin, and C. R. Willets, “A sub-40 nm body thickness N-type FinFET,” in Proc. Device Res. Conf., 2001, pp. 24-25.
[69]Y.-K. Choi, T.-H. King, and C. Hu, “Nanoscale CMOS Spacer FinFET for the Terabit Era,” IEEE Electron Device Lett., vol. 23, no. 1, January, 2002, pp. 25-27.
[70]N. Lindert, L. Chang, Y.-K. Choi, E. H. Anderson, W.-C. Lee, T.-J. King, J. Bokor, and C. Hu, “Sub-60-nm Quasi-planar FinFETs fabricated using a simplified process,” IEEE Trans. Electron Devices, vol. 22, no. 10, Oct., 2001, pp. 487-489.
[71]G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, and E.C.-C. Kan, “FinFET design considerations based on 3-D simulation and analytical modeling,” IEEE Transactions on Electron Devices, vol. 49 , Issue: 8 , Aug., 2002, pp. 1411 – 1419.
[72]S.-H. Oh, D. Monroe, and J.M. Hergenrother, “Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, sur-rounding-gate MOSFETs,” IEEE Electron Device Letters, Volume: 21 , Issue: 9 , Sept., 2000, pp. 445 – 447.
[73]G. Pei, J. Kedzierski, P. Oldiges, M. Leong, and C.C. Kan,”FinFET De-sign consideration based on 3-D simulation and analytical model-ing,”IEEE Trans Electron Devices,vol.49, 2002, pp.1411-1419.
[74]Y. Ma, Z. Li, L. Liu, L. Tian, and Z. Yu,”Effective density-of-states ap-proach to QM correction in MOS structure,” Solid-State Electron.,vol. 44, pp. 401-407,2000.
[75]H.-S. Wong, D. J. Frank, and P. M. Solomon, “Device design considera-tion for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25nm channel length generation,”in IEDM Tech. Dig., 1998,pp. 407-410.
[76]Int. Technol. Roadmap for Semiconductors, Semiconductor Industry Assoc., San Jose, CA, 1999.
[77]Y.Taur, C.H.Wann, and D.J.Frank.”25nm COMS design considerations,” in IEDM Tech. Dig.,1998, pp.789-792.
[78]Pirovano, A.; Lacaita, A.L.; Spinelli, A.S, “Two-dimensional quantum effects in nanoscale MOSFETs” IEEE Transactions on Electron Devices, vol. 49, Issue: 1 , Jan., 2002, pp. 25 -31.
[79]L. Chang, S. Tang, T. J. King, J. Bokor, and C. Hu, “ Gate length scaling and threshold voltage control of double-gate MOSFET’s,” in IEDM Tech. Dig., 2000, pp. 719-722.
[80]Advance MOS Device Physics. New York: Academic, 1989, vol.18.
[81]J.Chen, T. Y. Chan, I. C. Chen, P.K. Ko, and C. Hu, “ Subbreaksown drain leakage current in MOSFET,” IEEE Electron Device Lett., vol. EDL-8, 1987, pp. 515-517.
[82]T. Ishiyama and Y. Omua, “ Influence of superficial Si layer thickness on band-to-band tunneling current characteristics in ultra-thin n-channel metal-oxide-semiconductor field-effect-transistor by separation by im-planted oxygen (nMOSFET/SIMOX),” Jpn. J. Appl. Phys., vol. 36, 1997, pp.264-267.
[83]E. Merzbacher, Quantum Mechanics, 3rd ed. New York: Wiley.
[84]Nakajima, H.; Yanagi, S.; Komiya, K.; Omura, Y, “Off-leakage and drive current characteristics of sub-100-nm SOI MOSFETs and impact of quantum tunnel current” IEEE Transactions on Electron Devices, vol. 49, Issue: 10 , Oct, 2002 ,pp.: 1775 -1782.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文