|
References 1.G. Moore, "Progress in digita integrated electronics," in IEDM Tech. Digest, pp. 11-13, 1975. 2.www.itrs.net, 2001. 3.R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. Leblanc, “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE J. Solid-State Circuits, vol.9, pp.256–268, 1974. 4.D. Frank, Y. Taur, and H. Wong, "Generalized scale length for two-dimensional effects in MOSFETs," IEEE Electron Dev. Lett., pp.385-387, 1998. 5.S. Wind, D. Frank, and H. Wong, "Scaling silicon MOS device to their limits," Microelectronics Egg., pp.271-282, 1996. 6.L. Su, J. Jacobs, J. Chung, and D. Antoniadis, "Deep-sub-micrometer channel design in silicon-on-insulator (SOI) MOSFETs," in IEDM Tech. Digest, pp. 183-186,1994. 7.H. Wong, D. Frank, and P. Solomon, "Device design considerations for double gate, ground-plane, and single-gated ultra-thin SOI MOSFETs at the 25 nm channel length generation," in IEDM Tech. Digest, pp.407-410, 1998. 8.L. Chang, S. Tang, T. King, J. Bokor, and C. Hu, "Gate length scaling and threshold voltage control of double-gate MOSFETs," in IEDM Tech. Digest, pp. 719-722, 2000. 9.Z. Ren, S. Bourland, S. Lee, J. Denton, M. Lundstrom, and R. Bashir, "Ultra-thin body SOI by controlled oxidation of thin Si membranes," in IEEE Silicon Nanoelectronics Workshop, pp.11-12, 2000. 10.G. C. F. Yeap, S. Krishnan, and M. R. Lin, “Fringing-induced barrier lowering (FIBL) in sub-100-nm MOSFETs with high gate dielectrics,” Electron. Lett., vol.34, no.11, pp.1150-1152, 1998. 11.C. H. Lai, L. C. Hu, H. M. Lee, L. J. Do, and Y. C. King, “New stack gate insulator structure reduce FIBL effect obviously,” in Proc. VLSI-TSA, pp. 216-219, 2001. 12.D. L. Kencke, W. Chen, H. Wang, S. Mudanai, Q. Ouyang, A. Tasch, and S. K. Banerjee, “Source-side barrier effects with very high- dielectrics in 50-nm Si MOSFETs,” in Proc. Dev. Res. Conf., pp.22-23, 1999.
13.G. C. F. Yeap, S. Krishnan, and M. R. Lin, “Fringing-induced barrier lowering (FIBL) in sub-100-nm MOSFETs with high- gate dielectrics,” Electron. Lett., vol.34, no.11, pp.1150-1152, 1998. 14.S. C. Lin and J. B. Kuo, “Fringing-induced barrier lowering (FIBL) effects of 100-nm FD SOI NMOS devices with high permittivity gate dielectrics and LDD/sidewall oxide spacer,” in Proc. Int. SOI Conf., pp.93-94, 2002. 15.X. Liu, S. Lou, Z. Xia, D. Guo, H. Zhu, J. Kang, and R. Han, “Characteristics of different structure sub-100-nm MOSFETs with high- gate dielectrics,” in Proc. 6th Int. Conf. Solid-State Integrated-Circuit Technology, vol.1, pp.333-336, 2001. 16.Q. Chen, L. Wang, J. D. Meindl, “Fringe-induced barrier lowering (FIBL) included threshold voltage model for double-gate MOSFETs”, Solid-State Electronics vol.49, Issue: 2, pp.271-274, 2005. 17.H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, F. Masuoka, “High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs”, Electron Devices Meeting, 1988. Technical Digest., International, pp.222-225 , 1988. 18.A. Kranti, S. Haldar, R. S. Gupta, “Design guidelines of vertical surrounding gate (VSG) MOSFETs for future ULSI circuit applications”, Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. 2001 Topical Meeting, pp.161-165, 2001. 19.T. Eodoh, T. Nakamura, and F. Masuoka, “An accurate model of fully-depleted surrounding gate transistor (FD-SGT),” ICICE Trans. Electron, pp.905-910, 1997. 20.C. P. Auth, J. D. Plummer, “Scaling theory for cylindrical fully depleted, surrounding-gate MOSFETs,” IEEE Electron Device Lett., vol.18, no.2, pp.74-76, 1997. 21.Y. Chen and J. Luo, “A comparative study of double-gate and surrounding-gate MOSFETs in strong inversion and accumulation using an analytical model,” in Proc. Int. Conf. Modeling Simulation of Microsystems, pp.546–549, 2001. 22.H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi and F. Masuoka, “High performance CMOS Surrounding Gate Transistor (SGT) for Ultra High Density LSIs in IEDM Tech. dig., pp.222-225, 1988. 23.K. Sunouchi, “A surrounding gate transistor (SGT) cell for 64/256Mbit DRAM’s,” in IEDM Tech. dig., pp.23-26, 1989. 24.F. Masuoka, and T. Endoh, “Technology Trend of Flash Memory”, Proceedings of the ECS 1st International Conference on Semiconductor Technology (ISTC 2001), pp.1-10, 2001. 25.T. Endoh, H. Nakamura, H. Sakuraba, and F.Masuoka, “Cell Array Design of Stacked-Surrounding Gate Transistor (S-SGT) DRAM for Small Array Noise and Ultra-High Density DRAM”, Proceedings of the ECS 1st International Conference on Semiconductor Technology (ISTC 2001), pp.23-31, 2001. 26.M. Iwai, H. Ohta, M. Suzuki, H. Sakuraba, T. Endoh and F. Masuoka, “Multi-Pillar Surrounding Gate Transistor (M-SGT) type MOS Capacitor Using 0.4um MOS Technology” 2001 Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices (AWAD 2001), pp.4-7, 2001. 27.R. Nishi, M. Suzuki, H. Sakuraba, T. Endoh and F. Masuoka “Novel S/D Engineering of Surrounding Gate Transistor (SGT) for Suppressing Substrate Bias Effect” 2001 Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices (AWAD 2001), pp.4-7, 2001. 28.T. Endoh, M. Suzuki, H. Sakuraba, F. Masuoka, “2.4F2 Memory Cell Technology with Stacked-Surrounding Gate Transistor (S-SGT) DRAM”, IEEE Transactions Electron Devices, vol.48, no.8, pp.1599-1603, 2001. 29.T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, and M. Bohr, “Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors,” in Proc. Symp. VLSI Technol., pp. 174-175, 2000. 30.X. Tang, V. K. De, and J. D. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement,” IEEE Trans. VLSI Technol., vol.5, pp. 369-376, 1997. 31.Q. Chen, E. M. Harrell, J. D. Meindl, "A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFE",IEEE JNL ,vol.50, Issue 7, pp.631-1637, 2003. 32.X. Liang, Y. Taur, “A 2-D Analytical Solution for SCEs in DG MOSFETs”, IEEE Transactions Electron Devices, vol.51, Issue 9, pp.385-1391, 2004.
33.K. Suzuki, Y. Tosaka, and T. Sugii, “Analytical threshold voltage model for short channel n+-p+ double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, vol.43, pp.732-738, 1996. 34.K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, vol.40, pp.2326–2329, 1993. 35.G. Pei, V. Narayanan, Z. Liu, and E. C. Kan, “3D analytical subthreshold and quantum mechanical analyses of double-gate MOSFET,” in IEDM Tech. Dig., pp.531-534, 2001. 36.T. N. Nguyen, “Small-Geometry MOS transistors: Physics and modeling of surface- and buried-channel MOSFETs,” Ph.D. dissertation, Stanford Univ., Stanford, 1984. 37.D. Jimenez, B. Iniguez, J. Sune, L.F. Marsal, J. Pallares, J. Roig, and D. Flores,” Continuous Analytic I-V Model for surrounding-gate MOSFETs,” IEEE Electron Device Letters, vol.25, no.8, pp.571-573, 2004. 38.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981. 39.Y. Ma, Z. Li, L. Liu, L. Tian, and Z. Yu, “Effective density-of-states approach to QM correction in MOS structure,” Solid-State Electron., vol.44, pp.401-407, 2000. 40.D. J. Frank, S. E. Laux, and M. V. Fischetti, “Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go?,” in IEDM Tech. Dig., pp. 553–556, 1992. 41.K. Takeuchi, R. Koh, and T. Mogami, “A study of the threshold voltage variation for ultra-small bulk and SOI CMOS,” IEEE Trans. Electron Devices, vol.48, pp.1995-2001, 2001. 42.M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. Juffermans, and H. Lifka, “Influence of high substrate doping levels on the threshold voltage and the mobility of deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol.39, pp.932-938, 1992. 43.K. Suzuki, Y. Tosaka, and T. Sugii, “Analytical threshold model for short channel double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, vol.43, pp.1166-1168, 1996. 44.N. Arora, MOSFET Models for VLSI Circuit Simulation: Theory and Practice. New York: Springer-Verlag, 1993. 45.R.Y. Yan, A. Ourmazd, and K.F. Lee, ”Scaling the Si MOSFET: from bulk to SOI to bulk”, IEEE Trans. Electron Devices, vol.39, no.7, pp.1704-1710, 1992. 46.F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, “Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance,” IEEE Electron Device Lett., pp.410-412, 1987. 47.R. R. Troutman, “VLSI limitations from drain-induced barrier lowering,” IEEE Transactions Electron Devices vol.26, Issue 4, pp.461-469, 1979. 48.D. J. Wouters, J. P. Colinge, H. E. Maes, Subthreshold slope in thin-film SOI MOSFETs, IEEE Transactions Electron Devices, vol.37, Issue 9, pp.2022–2033, 1990. 49.H. S. Wong, D. Frank, Y. Taur, and J. Stork, “Design and performance considerations for sub-0.1 um double-gate SOI MOSFETs”, IEDM Tech. Dig., pp.747–750, 1994. 50.Q. Chen, B. Agrawal, and J. D. Meindl, “A comprehensive analytical subthreshold swing (S) model for double-gate MOSFETs,” IEEE Trans. Electron Devices, vol.49, pp.1086-1090, 2002. 51.Y. Taur, L. H. Wann, and D. J. Frank, “25 nm CMOS design considerations”, in IEDM Tech. Dig., pp.789-792, 1998. 52.Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. Sai-Halasz, R.G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. P. Wong, “CMOS scaling into the nanometer regime”, Proc. IEEE, vol.85, no.4, pp. 486-504, 1997. 53.D. J. Frank, R. H. Dennard, and E. Nowak, “Device scaling limits of Si MOSFETs and their application dependences”, Proc. IEEE, vol.89, no.3, pp.259-288, 2001. 54.Y. Taur, “CMOS scaling beyond 0.1 um:how short can Si go”, in Proc.Symp. VLSI Technology, pp.6-9, 1999. 55.J. R. Brews, W. Fichtner, E. H. Nicollian, and S. M. Sze, “Generalized guide for MOSFET miniaturization”, IEEE Electron Device Letters., vol.1, pp.2-4, 1980. 56.C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, "A comparative study of advanced MOSFET concepts," IEEE Trans. Electron Devices, vol.43, no.10, pp.1742-1753, 1996.
57.S. H. Oh, D. Monroe, and J. M. Hergenrother, “Analytical Description of short-channel effects in fully-depleted double-gate and cylindrical surrounding-gate MOSFETs”, IEEE Trans. Electron Devices, vol.21, no.9, pp.445-447, 2000. 58.J. T. Park and J. P. Colinge, “Multiple-gate SOI MOSFETs: Device design guidelines”, IEEE Trans. Electron Devices, vol.49, no.12, pp.2222-2229, 2002. 59.C. P. Auth and J. D. Plummer, “Scaling theoty for cylindrical fully-depleted surrounding-gate MOSFETs”, IEEE Electron Device Letters, vol.18, no.2 pp.74-76, 1997. 60.J. P. Colinge, J. W. Park, and W. Xiong, “Threshold voltage and subthreshold slope of multiple-gate SOI MOSFETs”, IEEE Electron Device Letters, vol.24, no.8, pp.515-517, 2003. 61.B. Goebel, J. Luitzen, D. Manger, P. Moll, K. Mummler, M. Popp, U. Scheler, T. Schlosser, H. Seidl, M. Sesterhenn, S. Slesazeck, S. Tegen, “Fully depleted surrounding gate transistor (SGT) for 70nm DRAM and beyond”, IEDM Tech Dig., pp.275-278, 2002. 62.J. S. Yuan and J. J. Liou, “Semiconductor Device Physics and Simulation,” Plenum Publishing Corporation, pp.67-68, 1998. 63.J. J. Liou, A. Ortiz-Conde, and F. Garcia-Sanchez, “Analysis and Design of MOSFETs Modeling, Simulation, and Parameter Extraction”, Kluwer Academic Publishers, pp.34-35, 2000. 64.S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Device Lett., vol.18, pp.206, 1997. 65.H. S. Momose, M. Ono, T. Yoshtomi, T. Ohguro, S. I. Nakamura, M. Saito, and H. Iwai, “1.5nm direct-tunneling gate oxide Si MOSFETs,” IEEE Trans. Electron Device, vol. 43, pp.1233, 1996. 66.C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor,” J. Appl. Phys., vol,83, no.9 ,pp.48-23, 1998. 67.K. A. Bowman, L. Wang, X. Tang, J. D. Meindl, “A circuit-level perspective of the optimum gate oxide thickness”, IEEE T-ED, pp.1800-1810, 2001.
68.E. N. Vogel, K. Z. Ahmed, B. Hornung, W. K. Henson, P. K. McLarty, G. Lucovsky, “Modeled tunnel currents for high permittivity dielectrics”, IEEE T-ED, pp.1350–1355, 1998. 69.C. M. Osburn, I. Kim, S. K. Han, I. De, K. F. Yee, S. Gannavaram, “Vertically scaled MOSFET gate stacks and junctions: how far are we likely to go”, IBM J Res, pp.299–315, 2002. 70.Y. Harada, M. Niwa, S. Lee, D. L. Kwong, “Specific structural factors influencing on reliability of CVD- HfO2”, Symp VLSI Technol, pp.26–27, 2002. 71.J. M. Hergenrother, G. D. Wilk, T. Nigam, F. P. Klemens, D. Monroe, P. J. Silverman, “50nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics”, IEEE IEDM Tech Dig, pp.51–54, 2001. 72.J. H. Lee, Y.S. Kim, H.S. Jung, J.H. Lee, N.I. Lee, H.K. Kang, “Poly-Si gate CMOSFETs with HfO2–Al2O3 laminate gate dielectric for low power applications”, Symp VLSI Tech Dig, pp.65–67, 2002. 73.K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, “Effects of high-temperature forming gas anneal on HfO2 MOSFET performance”, Symp VLSI Tech Dig, pp.15–17, 2002. 74.S. B. Samavedam , H. H. Tseng , P. J. Tobin , J. Mogab , S. Dakshina-Murthy , L. B. La , “Metal gate MOSFETs with HfO2 gate dielectrics”, Symp VLSI Tech Dig, pp.35–37, 2002. 75.S. Pidin, Y. Morisaki, Y. Sugita, T. Aoyama, K. Irino, T. Nakamura, “Low standby power CMOS with HfO2 gate oxide for 100-nm generation”, Symp VLSI Tech Dig, pp.120–123, 2002.
|