跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龍威宇
研究生(外文):W.Y.Lung
論文名稱:有關非摻雜圓柱型環繞式閘極金氧半場效電晶體之次臨界行為研究
論文名稱(外文):Study of Subthreshold Behavior for the Undoped Surrounding-Gate MOSFETs
指導教授:江德光
指導教授(外文):T.K.Chiang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:87
中文關鍵詞:圓柱型環繞式閘極
外文關鍵詞:Surrounding-Gate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
近年來有關環繞式閘極結構電晶體的研究陸續被提出而且備受矚目,對於未來的超大型積體電路設計這些研究展露以下環繞式閘極的優點: 有效抑制短通道效應、高封裝密度、高速截止頻率、低功率消耗、堆疊電路設計的應用、傑出的閘極控制通道能力、有效抑制邊緣電場導致通道能障下降效應,因此發展一個精確預測環繞式閘極元件特性之包含矽基體與閘極絕緣層的分析模型已是刻不容緩的事。
基於非摻雜環繞式閘極結構之矽基體和閘極絕緣層的帕森方程式之完全封閉型解,於本研究中首次將次臨界分析模型推導出來,吾人根據分離變數之疊加法與簡化二維邊界條件推導出此分析模型,此模組顯示出電位分佈、短通道臨界電壓縮減、次臨界電流、次臨界斜率、汲極偏壓導致通道能障降低效應,和因使用高閘極介電值絕緣層所造成的邊緣電場導致通道能障下降效應的解析值,此模型之演算結果與數值分析之模擬數據相當接近,並且發現非摻雜環繞式閘極結構電晶體能夠有效的抑制短通道效應與邊緣電場導致通道能障下降效應,由於此模型的計算效能所以可應用在SPICE之模擬。
In recent years, studies about Surrounding-Gate (SG) transistor have successively been proposed, and have attracted a lot of attention. For future ULSI's design, it is shown that SG transistor have the following advantages, such as: reduced short channel effects (SCEs) effectively, high packing density, high-speed cut-off frequency, low-power consumption, the application of Stacked circuit design, the excellent gate control over the channel and reduced fringe-induced barrier lowering (FIBL) effectively. To make the device be applied to the simulation, it is necessary to develop an analytical 2D model to predict precisely the performance of the SG MOSFET.
In this thesis, based on fully closed-form solutions of Poisson’s equation in both regions of Si body and gate insulator, a physical and analytical model for undoped Surrounding-Gate (SG) MOSFETs has been derived. It uses the superposition method and simplifying assumptions of 2D boundary conditions to derive the model. The model shows the distribution of electric potential, short channel threshold voltage roll-off (ΔVTH), subthreshold current, subthreshold slope (Swing), drain-induced barrier lowering (DIBL) effects and FIBL effects arising from the use of high-k gate dielectric. The new model is verified by published numerical simulations with close agreement. It is found that the SCEs and FIBL effects for undoped SG MOSFETs can be effectively reduced by using both short channel length and high-k gate dielectric. Due to its computational efficiency, this model can be applied for SPICE simulation.
Contents
摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Table vi
List of Figures vii
Chapter 1 Introduction 1
1.1 VLSI Overview 1
1.2 Device Scaling and Problem 2
1.3 Surrounding-Gate MOSFETs Survey 5
1.4 Motive of the Thesis 9
Chapter 2 2D Threshold Voltage Model for Undoped Surrounding-Gate MOSFETs 10
2.1 Motive 10
2.2 Model Derivation 11
2.3 2D Boundary Conditions Value Problem 13
2.4 Scaling Length 16
2.5 Coefficients Solution 20
2.6 2D Generalized Potential Model 24
2.7 Minimum Channel Potential 27
2.8 Physical Threshold Voltage Roll-off Model 29
2.9 Drain-induced Barrier Lowering (DIBL) Model 36
2.10 Discussion and Conclusion 38
Chapter 3 2D Subthreshold Current Model for Surrounding-Gate MOSFETs 42
3.1 Motive 42
3.2 Subthreshold Slope Model 44
3.3 Analytic Subthreshold Current Model 47
3.4 Discussion and Conclusions 51
Chapter 4 The Model for SG MOSFETs with High-k Dielectrics 56
4.1 Motive 56
4.2 Issues of High-K material and FIBL effect 58
4.3 High-K Model 61
4.4 Discussion and Conclusion 74
Chapter 5 Conclusions and Future Works 76
5.1 Conclusions 76
5.2 Future Works 78
Publications List 79
References 80
Introduction of the Author 87
References
1.G. Moore, "Progress in digita integrated electronics," in IEDM Tech. Digest, pp. 11-13, 1975.
2.www.itrs.net, 2001.
3.R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. Leblanc, “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE J. Solid-State Circuits, vol.9, pp.256–268, 1974.
4.D. Frank, Y. Taur, and H. Wong, "Generalized scale length for two-dimensional effects in MOSFETs," IEEE Electron Dev. Lett., pp.385-387, 1998.
5.S. Wind, D. Frank, and H. Wong, "Scaling silicon MOS device to their limits," Microelectronics Egg., pp.271-282, 1996.
6.L. Su, J. Jacobs, J. Chung, and D. Antoniadis, "Deep-sub-micrometer channel design in silicon-on-insulator (SOI) MOSFETs," in IEDM Tech. Digest, pp. 183-186,1994.
7.H. Wong, D. Frank, and P. Solomon, "Device design considerations for double gate, ground-plane, and single-gated ultra-thin SOI MOSFETs at the 25 nm channel length generation," in IEDM Tech. Digest, pp.407-410, 1998.
8.L. Chang, S. Tang, T. King, J. Bokor, and C. Hu, "Gate length scaling and threshold voltage control of double-gate MOSFETs," in IEDM Tech. Digest, pp. 719-722, 2000.
9.Z. Ren, S. Bourland, S. Lee, J. Denton, M. Lundstrom, and R. Bashir, "Ultra-thin body SOI by controlled oxidation of thin Si membranes," in IEEE Silicon Nanoelectronics Workshop, pp.11-12, 2000.
10.G. C. F. Yeap, S. Krishnan, and M. R. Lin, “Fringing-induced barrier lowering (FIBL) in sub-100-nm MOSFETs with high gate dielectrics,” Electron. Lett., vol.34, no.11, pp.1150-1152, 1998.
11.C. H. Lai, L. C. Hu, H. M. Lee, L. J. Do, and Y. C. King, “New stack gate insulator structure reduce FIBL effect obviously,” in Proc. VLSI-TSA, pp. 216-219, 2001.
12.D. L. Kencke, W. Chen, H. Wang, S. Mudanai, Q. Ouyang, A. Tasch, and S. K. Banerjee, “Source-side barrier effects with very high- dielectrics in 50-nm Si MOSFETs,” in Proc. Dev. Res. Conf., pp.22-23, 1999.

13.G. C. F. Yeap, S. Krishnan, and M. R. Lin, “Fringing-induced barrier lowering (FIBL) in sub-100-nm MOSFETs with high- gate dielectrics,” Electron. Lett., vol.34, no.11, pp.1150-1152, 1998.
14.S. C. Lin and J. B. Kuo, “Fringing-induced barrier lowering (FIBL) effects of 100-nm FD SOI NMOS devices with high permittivity gate dielectrics and LDD/sidewall oxide spacer,” in Proc. Int. SOI Conf., pp.93-94, 2002.
15.X. Liu, S. Lou, Z. Xia, D. Guo, H. Zhu, J. Kang, and R. Han, “Characteristics of different structure sub-100-nm MOSFETs with high- gate dielectrics,” in Proc. 6th Int. Conf. Solid-State Integrated-Circuit Technology, vol.1, pp.333-336, 2001.
16.Q. Chen, L. Wang, J. D. Meindl, “Fringe-induced barrier lowering (FIBL) included threshold voltage model for double-gate MOSFETs”, Solid-State Electronics vol.49, Issue: 2, pp.271-274, 2005.
17.H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, F. Masuoka, “High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs”, Electron Devices Meeting, 1988. Technical Digest., International, pp.222-225 , 1988.
18.A. Kranti, S. Haldar, R. S. Gupta, “Design guidelines of vertical surrounding gate (VSG) MOSFETs for future ULSI circuit applications”, Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. 2001 Topical Meeting, pp.161-165, 2001.
19.T. Eodoh, T. Nakamura, and F. Masuoka, “An accurate model of fully-depleted surrounding gate transistor (FD-SGT),” ICICE Trans. Electron, pp.905-910, 1997.
20.C. P. Auth, J. D. Plummer, “Scaling theory for cylindrical fully depleted, surrounding-gate MOSFETs,” IEEE Electron Device Lett., vol.18, no.2, pp.74-76, 1997.
21.Y. Chen and J. Luo, “A comparative study of double-gate and surrounding-gate MOSFETs in strong inversion and accumulation using an analytical model,” in Proc. Int. Conf. Modeling Simulation of Microsystems, pp.546–549, 2001.
22.H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi and F. Masuoka, “High performance CMOS Surrounding Gate Transistor (SGT) for Ultra High Density LSIs in IEDM Tech. dig., pp.222-225, 1988.
23.K. Sunouchi, “A surrounding gate transistor (SGT) cell for 64/256Mbit DRAM’s,” in IEDM Tech. dig., pp.23-26, 1989.
24.F. Masuoka, and T. Endoh, “Technology Trend of Flash Memory”, Proceedings of the ECS 1st International Conference on Semiconductor Technology (ISTC 2001), pp.1-10, 2001.
25.T. Endoh, H. Nakamura, H. Sakuraba, and F.Masuoka, “Cell Array Design of Stacked-Surrounding Gate Transistor (S-SGT) DRAM for Small Array Noise and Ultra-High Density DRAM”, Proceedings of the ECS 1st International Conference on Semiconductor Technology (ISTC 2001), pp.23-31, 2001.
26.M. Iwai, H. Ohta, M. Suzuki, H. Sakuraba, T. Endoh and F. Masuoka, “Multi-Pillar Surrounding Gate Transistor (M-SGT) type MOS Capacitor Using 0.4um MOS Technology” 2001 Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices (AWAD 2001), pp.4-7, 2001.
27.R. Nishi, M. Suzuki, H. Sakuraba, T. Endoh and F. Masuoka “Novel S/D Engineering of Surrounding Gate Transistor (SGT) for Suppressing Substrate Bias Effect” 2001 Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices (AWAD 2001), pp.4-7, 2001.
28.T. Endoh, M. Suzuki, H. Sakuraba, F. Masuoka, “2.4F2 Memory Cell Technology with Stacked-Surrounding Gate Transistor (S-SGT) DRAM”, IEEE Transactions Electron Devices, vol.48, no.8, pp.1599-1603, 2001.
29.T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, and M. Bohr, “Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors,” in Proc. Symp. VLSI Technol., pp. 174-175, 2000.
30.X. Tang, V. K. De, and J. D. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement,” IEEE Trans. VLSI Technol., vol.5, pp. 369-376, 1997.
31.Q. Chen, E. M. Harrell, J. D. Meindl, "A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFE",IEEE JNL ,vol.50, Issue 7, pp.631-1637, 2003.
32.X. Liang, Y. Taur, “A 2-D Analytical Solution for SCEs in DG MOSFETs”, IEEE Transactions Electron Devices, vol.51, Issue 9, pp.385-1391, 2004.

33.K. Suzuki, Y. Tosaka, and T. Sugii, “Analytical threshold voltage model for short channel n+-p+ double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, vol.43, pp.732-738, 1996.
34.K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, vol.40, pp.2326–2329, 1993.
35.G. Pei, V. Narayanan, Z. Liu, and E. C. Kan, “3D analytical subthreshold and quantum mechanical analyses of double-gate MOSFET,” in IEDM Tech. Dig., pp.531-534, 2001.
36.T. N. Nguyen, “Small-Geometry MOS transistors: Physics and modeling of surface- and buried-channel MOSFETs,” Ph.D. dissertation, Stanford Univ., Stanford, 1984.
37.D. Jimenez, B. Iniguez, J. Sune, L.F. Marsal, J. Pallares, J. Roig, and D. Flores,” Continuous Analytic I-V Model for surrounding-gate MOSFETs,” IEEE Electron Device Letters, vol.25, no.8, pp.571-573, 2004.
38.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981.
39.Y. Ma, Z. Li, L. Liu, L. Tian, and Z. Yu, “Effective density-of-states approach to QM correction in MOS structure,” Solid-State Electron., vol.44, pp.401-407, 2000.
40.D. J. Frank, S. E. Laux, and M. V. Fischetti, “Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go?,” in IEDM Tech. Dig., pp. 553–556, 1992.
41.K. Takeuchi, R. Koh, and T. Mogami, “A study of the threshold voltage variation for ultra-small bulk and SOI CMOS,” IEEE Trans. Electron Devices, vol.48, pp.1995-2001, 2001.
42.M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. Juffermans, and H. Lifka, “Influence of high substrate doping levels on the threshold voltage and the mobility of deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol.39, pp.932-938, 1992.
43.K. Suzuki, Y. Tosaka, and T. Sugii, “Analytical threshold model for short channel double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, vol.43, pp.1166-1168, 1996.
44.N. Arora, MOSFET Models for VLSI Circuit Simulation: Theory and Practice. New York: Springer-Verlag, 1993.
45.R.Y. Yan, A. Ourmazd, and K.F. Lee, ”Scaling the Si MOSFET: from bulk to SOI to bulk”, IEEE Trans. Electron Devices, vol.39, no.7, pp.1704-1710, 1992.
46.F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, “Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance,” IEEE Electron Device Lett., pp.410-412, 1987.
47.R. R. Troutman, “VLSI limitations from drain-induced barrier lowering,” IEEE Transactions Electron Devices vol.26, Issue 4, pp.461-469, 1979.
48.D. J. Wouters, J. P. Colinge, H. E. Maes, Subthreshold slope in thin-film SOI MOSFETs, IEEE Transactions Electron Devices, vol.37, Issue 9, pp.2022–2033, 1990.
49.H. S. Wong, D. Frank, Y. Taur, and J. Stork, “Design and performance considerations for sub-0.1 um double-gate SOI MOSFETs”, IEDM Tech. Dig., pp.747–750, 1994.
50.Q. Chen, B. Agrawal, and J. D. Meindl, “A comprehensive analytical subthreshold swing (S) model for double-gate MOSFETs,” IEEE Trans. Electron Devices, vol.49, pp.1086-1090, 2002.
51.Y. Taur, L. H. Wann, and D. J. Frank, “25 nm CMOS design considerations”, in IEDM Tech. Dig., pp.789-792, 1998.
52.Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. Sai-Halasz, R.G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. P. Wong, “CMOS scaling into the nanometer regime”, Proc. IEEE, vol.85, no.4, pp. 486-504, 1997.
53.D. J. Frank, R. H. Dennard, and E. Nowak, “Device scaling limits of Si MOSFETs and their application dependences”, Proc. IEEE, vol.89, no.3, pp.259-288, 2001.
54.Y. Taur, “CMOS scaling beyond 0.1 um:how short can Si go”, in Proc.Symp. VLSI Technology, pp.6-9, 1999.
55.J. R. Brews, W. Fichtner, E. H. Nicollian, and S. M. Sze, “Generalized guide for MOSFET miniaturization”, IEEE Electron Device Letters., vol.1, pp.2-4, 1980.
56.C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, "A comparative study of advanced MOSFET concepts," IEEE Trans. Electron Devices, vol.43, no.10, pp.1742-1753, 1996.


57.S. H. Oh, D. Monroe, and J. M. Hergenrother, “Analytical Description of short-channel effects in fully-depleted double-gate and cylindrical surrounding-gate MOSFETs”, IEEE Trans. Electron Devices, vol.21, no.9, pp.445-447, 2000.
58.J. T. Park and J. P. Colinge, “Multiple-gate SOI MOSFETs: Device design guidelines”, IEEE Trans. Electron Devices, vol.49, no.12, pp.2222-2229, 2002.
59.C. P. Auth and J. D. Plummer, “Scaling theoty for cylindrical fully-depleted surrounding-gate MOSFETs”, IEEE Electron Device Letters, vol.18, no.2 pp.74-76, 1997.
60.J. P. Colinge, J. W. Park, and W. Xiong, “Threshold voltage and subthreshold slope of multiple-gate SOI MOSFETs”, IEEE Electron Device Letters, vol.24, no.8, pp.515-517, 2003.
61.B. Goebel, J. Luitzen, D. Manger, P. Moll, K. Mummler, M. Popp, U. Scheler, T. Schlosser, H. Seidl, M. Sesterhenn, S. Slesazeck, S. Tegen, “Fully depleted surrounding gate transistor (SGT) for 70nm DRAM and beyond”, IEDM Tech Dig., pp.275-278, 2002.
62.J. S. Yuan and J. J. Liou, “Semiconductor Device Physics and Simulation,” Plenum Publishing Corporation, pp.67-68, 1998.
63.J. J. Liou, A. Ortiz-Conde, and F. Garcia-Sanchez, “Analysis and Design of MOSFETs Modeling, Simulation, and Parameter Extraction”, Kluwer Academic Publishers, pp.34-35, 2000.
64.S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Device Lett., vol.18, pp.206, 1997.
65.H. S. Momose, M. Ono, T. Yoshtomi, T. Ohguro, S. I. Nakamura, M. Saito, and H. Iwai, “1.5nm direct-tunneling gate oxide Si MOSFETs,” IEEE Trans. Electron Device, vol. 43, pp.1233, 1996.
66.C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor,” J. Appl. Phys., vol,83, no.9 ,pp.48-23, 1998.
67.K. A. Bowman, L. Wang, X. Tang, J. D. Meindl, “A circuit-level perspective of the optimum gate oxide thickness”, IEEE T-ED, pp.1800-1810, 2001.

68.E. N. Vogel, K. Z. Ahmed, B. Hornung, W. K. Henson, P. K. McLarty, G. Lucovsky, “Modeled tunnel currents for high permittivity dielectrics”, IEEE T-ED, pp.1350–1355, 1998.
69.C. M. Osburn, I. Kim, S. K. Han, I. De, K. F. Yee, S. Gannavaram, “Vertically scaled MOSFET gate stacks and junctions: how far are we likely to go”, IBM J Res, pp.299–315, 2002.
70.Y. Harada, M. Niwa, S. Lee, D. L. Kwong, “Specific structural factors influencing on reliability of CVD- HfO2”, Symp VLSI Technol, pp.26–27, 2002.
71.J. M. Hergenrother, G. D. Wilk, T. Nigam, F. P. Klemens, D. Monroe, P. J. Silverman, “50nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics”, IEEE IEDM Tech Dig, pp.51–54, 2001.
72.J. H. Lee, Y.S. Kim, H.S. Jung, J.H. Lee, N.I. Lee, H.K. Kang, “Poly-Si gate CMOSFETs with HfO2–Al2O3 laminate gate dielectric for low power applications”, Symp VLSI Tech Dig, pp.65–67, 2002.
73.K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, “Effects of high-temperature forming gas anneal on HfO2 MOSFET performance”, Symp VLSI Tech Dig, pp.15–17, 2002.
74.S. B. Samavedam , H. H. Tseng , P. J. Tobin , J. Mogab , S. Dakshina-Murthy , L. B. La , “Metal gate MOSFETs with HfO2 gate dielectrics”, Symp VLSI Tech Dig, pp.35–37, 2002.
75.S. Pidin, Y. Morisaki, Y. Sugita, T. Aoyama, K. Irino, T. Nakamura, “Low standby power CMOS with HfO2 gate oxide for 100-nm generation”, Symp VLSI Tech Dig, pp.120–123, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top