跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡柏安
研究生(外文):Poan Tsai
論文名稱:有關超大型積體電路內連線上串音及寄生電容之模擬與分析
論文名稱(外文):RLC Crosstalk analysis and parasitic capacitance modeling on VLSI interconnections
指導教授:江德光
指導教授(外文):T. K. Chiang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:55
中文關鍵詞:超大型積體電路內連線串音現象寄生電容
外文關鍵詞:VLSIinterconnectioncrosstalkparasitic capacitance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
目前超大型積體電路持續發展,而造就更小的晶片以及更小的內部元件尺寸,因此連接積體電路內部各元件的內連線也趨向於緊密複雜。由於晶片面積不斷縮小以及操作時脈頻率不斷升高,導致內連線間寄生效應及串音現象變的極為嚴重。在此論文中,吾人將對串音模組及寄生電容模組做更深入的研究與分析。
在過去大部分的串音模組都只有考慮到電容耦合效應,但是由於目前的操作頻率越來越高,電感耦合效應勢必考慮進去。在電感耦合中以互感最為主要,互感將會造成輸入雜訊脈衝到被干擾線,雜訊脈衝有可能會造成系統機能的錯誤以及改變被干擾線上的傳播延遲。吾人依據傳輸線原理推導出一各簡單的串音模組,此模組能成功地顯示出由電感耦合和電容耦合所造成的雜訊波形。
另外吾人也針對既有的寄生電容模組提出未考慮到的幾何參數,經由二維模擬軟體 ─ Raphael 所萃取出的數據資料顯示出,在非平面的相互交叉內連線結構下,導線的傾斜量也將影響到寄生電容的數值。因此為了能更完美地預測出寄生電容的數值,勢必導線的傾斜量也須考慮進去。
Continuous advancements in the field of very large scale integrated circuits and very high speed integrated circuits have resulted in smaller chip sizes, smaller device geometries, and millions of closely spaced interconnections in one or more levels that connect the various components on the chip. Due to steady decrease in chip area and increase in clock frequencies, the influence of interconnects parasitic on circuit behavior becomes significant. In this study, we focus on modeling improvement for RLC crosstalk and parasitic capacitance.
In the past, most existing noise models only consider capacitive coupling. However, at current operating frequencies, inductive crosstalk effects should be included for complete coupling noise analysis. One aspect of on-chip inductance that has not been studied well is mutual inductive coupling. Mutual inductance causes signal integrity issues by injecting noise pulses on a victim line. The injected noise can either cause functional failure or change the delay of the victim line. Based on transmission line theory, we propose a simple RLC crosstalk model. Due to its simplicity, the model is useful in understanding noise waveform shapes due to capacitive and inductive coupling and also their dependencies on various parameters. The proposed model will be particularly useful in investigating the effect of physical design changes (linewidth, spacing, etc.) on noise.
Furthermore, based on 2D simulation result, we show that magnitude of slope regarding non-planar interconnects will affect the parasitic capacitance of crossover interconnects, which is ignored by previous investigations. To precisely predict the capacitances of the 2D interconnect, the sloping issue should be accounted for.
摘要…...……………………………………………………………………………….....I
Abstract.............................................................................................................................II
Acknowledgements………………………………………………………………….....III
Chapter 1 Abstract (Chinese)........................................................................................IV
Chapter 2 Abstract (Chinese)..........................................................................................V
Chapter 3 Abstract (Chinese)........................................................................................VI
Chapter 4 Abstract (Chinese).......................................................................................VII
Chapter 5 Abstract (Chinese)........................................................................................XI
List of Figures……………………………………………………………………….....VI
Chapter 1 Introduction…………………………………………………………………..1
1.1 Interconnection’s review………………………………………………………..1
1.2 Scope and Brief Description of this Thesis……………………………………..4
Chapter 2 Raphael Overview…………………………………………………………….5
2.1 Fundamentals…………………………………………………………………...5
2.2 Interconnect Configurations…………………………………………………….7
Chapter 3 Crosstalk Noise Model for On-chip RLC Wiring…………………………….9
3.1 Motivations……………………………………………………………………..9
3.2 RLC Crosstalk Analysis……………………………………………………….10
3.3 Crosstalk Noise Model for On-chip RLC Wiring……………………………..15
3.4 Simulation and Conclusion……………………………………………………18
Chapter 4 Parasitic Capacitance Modeling……………………………………………..20
4.1 Motivations……………………………………………………………………20
4.2 Parasitic Capacitance Model reviewing……………………………………….20
4.2.1 Capacitance of each region……………………………...……………..23
4.3 Sloping Problem………………………………………………………………28
Chapter 5 Conclusions and Future Works……………………………………………...33
5.1 Conclusions……………………………………………………………………33
5.1.1 RLC Crosstalk Noise Model…………………………………………...33
5.1.2 Parasitic Capacitance Model…………………………………………...33
5.2 Future Works………………………………………………………………….34
Publications List………………………………………………………………………..35
References………………………………………………………………………………36
Introduction of Author………………………………………………………………….40
[1]Ashok K. Goel, “High-Speed VLSI Interconnections: Modeling, Analysis, and Simulation”, John Wiley & Sons, Inc. , 1994.
[2]S. H. Hall, G. W. Hall, J. A. Mcall. “High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices”, John Wiley & Sons, Inc., 2000.
[3]C. K. Cheng, J. Lillis, S. Lin. And N. Chang, “Interconnect Analysis and Synthesis,” John Wiley & Sons, 2000.
[4]Raphael User Manual of Avant! Corp., 2000.
[5]Y. I. Ismail and E. G. Friedman, “On-chip Inductance in High Speed Integrated Circuits,” Kluwer Acad. Publishers, 2001.
[6]Deutsch et al., “The importance of inductance and inductive coupling for on-chip wiring “, Proc. Topical Meeting on Electrical Performance of Electrical Packaging, pp. 53-56, 1997.
[7]D. Sylvester and K. Shephard, “Electrical integrity design and verification for digital and mixed-signal systems on chip”, Tutorial – Intl. Conf. Computer Aided Design, 2001.
[8]K. T. Tang and E. G. Friedman, “Interconnect coupling noise in CMOS VLSI circuits”, Proc. Intl. Symp. On Physical Design, pp. 48-53, 1999.
[9]L. He, N. Chang, S. Lin and O. S. Nakgawa, :An efficient inductance modeling for on-chip interconnects”, Proc. Custom Integrated Circuits Conference, pp. 457-460, 1999.
[10]L. Yin and L. He, “An efficient analytical model of coupled on-chip RLC interconnects”, Proc. Asia South Pacific Design Automation Conference, pp. 385-390,2001.
[11]J. Davis and J. Meindl, “Compact distributed RLC interconnect models – part II: coupled line transient expressions and peak crosstalk in multilevel networks”, IEEE Trans. Electron Devices, pp.2078-2087, Nov., 2000.
[12]K. C. Gupta, “Microstrip Lines and Slotlines”, Boston Artech House, 1996.
[13]H. B. Bakoglu, “Circuits, Interconnections, and Packaging for VLSI”, Addison-Wesley, 1990.
[14]Y. Yang and J. R. Brews, “Crosstalk estimate for CMOS-terminated RLC interconnect”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application, vol. 44, no. 1, pp. 82-85, January, 1997.
[15]T. V. Dinh, B. Cabon, and J. Chilo, “SPICE simulation of lossy and coupled interconnection lines”, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, vol. 17, no. 2, pp. 134-146, May, 1994.
[16]N. Delorme, M. Belleville, and J. Chilo, “Inductance and capacitance formulas for VLSI interconnects”, IEE Electronics letter, vol. 32, pp. 996-997, May, 1996
[17]S. Wong, P. S. Liu, J. Ru, and S. Lin, “Interconnect capacitance models for VLSI circuits”, Solid – State Electronics, vol. 42, no. 6, pp. 969-977, June, 1998.
[18]Y. I. Ismail, E. G. Friedman, and J. L. Neves, “Figures of merit to characterize the importance of on-chip inductance”, Proceedings of the ACM/IEEE Design Automation Conference, pp. 560-565, June, 1998.
[19]Deutsch, et al, “When are transmission-line effects important for on-chip interconnections?” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 10, pp. 1836-1846, October, 1997.
[20]K. S. Oh, D. Kuznetsov, and J. E. Schutt-Aine, “Capacitance computations in a multilayered dielectric medium using closed-form spatial Green’s functions,” IEEE Trans. On Microwave Theory and Techniques, vol. 42, no. 8, pp. 1443-1453, Aug., 1994.
[21]C. P. Yuan and T. N. Trick, “A simple formula for the estimation of the capacitance of two-dimensional interconnects in VLSI circuits,” IEEE Electron Device Letters, vol. 3, no. 12, pp. 391-393, Dec., 1982.
[22]L. W. Schaper and D. I. Amey, “Improved electrical performance required for future MOS packaging,” IEEE Trans. On Components, Hybrids and Manufacturing Technology, vol. 6, pp. 282-289, Sept., 1983.
[23]J. H. Chern, J. Huang, L. Arledge, P. C. Li, and P. Yang, “Multilevel metal capacitance models for CAD design synthesis systems, “IEEE Electron Device Letters, vol. 13, no. 1, pp. 32-34, Jan., 1992.
[24]M. I. Elmasry, “Capacitance calculations in MOSFET VLSI,” IEEE Electron Device Letters, vol. 3, no. 1, pp.6-7, Jan., 1982.
[25]W. H. Chang, “Analytical IC metal-line capacitance formulas,” IEEE Trans. On Microwave Theory and Techniques, pp. 608-611, Sept., 1976.
[26]M. S. Lin, “Measured capacitance coefficients of multiconductor microstrip lines with small dimensions,” IEEE Trans. On Components, Hybrids, and Manufacturing Technology, vol. 13, no. 4, pp. 1050-1054, Dec., 1990.
[27]E. Ruehli, “Survey of computer-aided electrical analysis of integrated circuit interconnections,” IBM Journal of Research and Development, vol. 23, pp. 626-639, Nov., 1979.
[28]R. L. M. Dang and N. Shigyo, “Coupling capacitances for two-dimensional wires,” IEEE Electron Device Letters, vol. 2, pp. 196-197, Aug., 1981.
[29]L. A. Glasser and D. W. Dobberpuhl, “The design and analysis of VLSI circuits,” Addison-Wesley Publishing Co, Reading, Mass., 1985.
[30]T. Sakurai and K. Tamaru, “Simple formulas for two- and three-dimensional capacitances,” IEEE Trans. On Electron Devices, vol. 30, no. 2, pp.183-185, Feb., 1983.
[31]Sadahiro Tani, Yoshihiro Uchida, M. Furuie, S. Tsukiyama, et al. “Parasitic capacitance modeling for multilevel interconnects”, IEEE, 2002.
[32]Steffen Rochel, N. S. Nagaraj, “Full-chip signal interconnect analysis for electromigration reliability.” IEEE First International Symposium on 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top