|
1.R. Bacon, J. Appl. Phys. 31, (1960) 283. 2.P. Wiles and J. Abrahamson, Carbon 16, (1978) 341. 3.S. Iijima, Nature 345, (1991) 56. 4.R. E. Smalley, B. I. Yakobson,‘The Future of the fullerenes’, Solid State Communication 107 (1998) 597-606. 5.J. Jiao, P. E. Nolan, D. Deraphin, A. H. Cutler, D. C. Lynch, Journal of the Electrochemical Society 143 (1996) 932. 6.R. Satio, M. Fujita, G. Dresselhaus, M. S. Dressehaus, Applied. Phys. Lett. 60,2204-2206(1992). 7.M. S. Dresselhaus, G. Dresshelaus, R. Satio, Phys. Rev. B 45, 6234 (1992). 8.Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Fullerenes and Carbon Nanotubes, Academic,San Diego, 1996. 9.M. S. Dresselhaus, G. Dresshelaus, R. Satio, Carbon 33, 883-891 (1995). 10.M. S. Dresselhaus, G. Dresselhauszy, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1996) 11.Ebbesen TW ed. Carbon Nanotubes,preparation and properties. CRC Press (1997). 12.Dresselhaus MS, Dresselhaus G, EKlund P.Phys World. 11 (1998) 33. 13.Treacy MMJ, Ebbesen TW, Gibson JM. Nature. 381 (1996) 678. 14.Krishnan A, Dujardin E, Ebbesen TW,et al.Phys Rev B. 58 (1998) 14013. 15.L. X. Benedict, S.G. Louie, M.L. Cohen, Solid State Commun. 100, 177-180 (1996). 16.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 273, 483-487 (1996) 17.T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature, 367, 519 (1994). 18.T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992). 19.J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B.Coq, and J. Castaing, Chem. Phys. Lett., 226, 364 (1994) 20.C.Journet, P.Bernier. Appl Phys. A. 67 (1998) 1 21.R. Saito, G. Dresselhaus, M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes ", ImperialCollege Press, 1998, p75. 22.F. Kokai etc. Chemical Physics Letters. 332 (2000) 449. 23.A.C. Dillon etc. Chemical Physics Letters. 316 (2000) 13 24.機械工業雜誌第255期,奈米機械技術專輯 (2004)P108-114 25.J.I.B.Wilson, N.Scheerbaum, S.Karim. Diamond and Related Materials 11. (2002) 918-921 26.J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam,“Patternedselective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,”Appl. Phys. Lett., 78 (2001) 901. 27.C. J. Lee, and J. Park,“Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,”Appl. Phys. Lett., 77 (2000) 3397. 28.G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim,“Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,”J. Appl. Phys., 91 (2002) 3847. 29.D. C. Li, L. Dai, S. Huang, A. W. H. Mac, and Z. L. Wang,“Structure and growth of aligned carbon nanotube films by pyrolysis,”Chem. Phys. Lett., 316 (2000) 349. 30.J. S. Suh, and J. S. Lee,“Highly ordered two-dimensional carbon nanotube arrays,”Appl. Phys. Lett., 75 (1999) 2047. 31.G. Zheng, H. Zhu, Q. Luo, Y. Zhou, and D. Zhao,“Chemical vapor deposition of well-aligned carbon nanotube patterns on cubic mesoporous silica films by soft lithography,”Chem. Mater., 13[12] (2001) 4416 . 32.S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai,“Self-oriented regular arrays of carbon nanotubes and their field emission properties,”Science, 283 (1999) 512. 33.N. Wang, Z. K. Tang, G. D. Li, J. S. Chen,“Single-walled 4Å carbon nanotube arrays,”Nature, 408 (2000) 50. 34.Y. C. Sui, D. R. Acosta, J. A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Z. Chi, J. O. Flores, and J. M. Saniger,“Structure, thermal, stability, and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template,”J. Phys. Chem. B, 105[8] (2000) 1523. 35.C. Bower, W. Zhu, S. Jin, and O. Zhou,“Plasma-induced alignment of carbon nanotubes,”Appl. Phys. Lett., 77 (2000) 830. 36.R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite,“Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene,”J. Catal., 30 (1973) 86. 37.A. Oberlin, M. Endo, T. Koyama,“High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition,”Jap. J. Appl. Phys., 16[9] (1997) 1519. 38.S. B. Sinnott, R. Andrews., D. Qian., A. M. Rao., Mao Z, E. C. Dickey and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chemical Physics Letters, 315, 25-30 (1999). 39.O. A. Louchev, Y. Sato, and H. Kanda,“Growth mechanism of carbon nanotube forests by chemical vapor deposition,”Appl. Phys. Lett., 80 (2002) 2752. 40.P. Chen, X. Wu, J. Lin, K. Tan, Science 285, 91 (1991). 41.M. S. Dresselhaus, K. A. Williams, P. C. Eklund, MRS Bull. 24 (11), 45 (1999). 42.Ashish Modi, Nikhil Koratkar, Eric Lass, Bingqing Wei, and Pulikel M. Ajayan, Nature 424(2003), 171-174. 43.C. H. Lin, H. L. Chang, M. H. Tsai, T. K. Cheng, Diamond and Related Materials 11. (2002) 922-926. 44.H. Cui, O. Zhou, B.R. Stoner, Journal of Applied Physics 88(2000) p.6072 45.C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Applied Physics Letters 77(2000) p.2767 46.Z.Y. Juang, I.P. Chien, J.F. Lai, T.S. Lai and C.H. Tsai, (2004), “The effects of ammonia on the growthof large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method, ”Diamond and Related Materials, Vol. 13, in press. 47.J. H. Kaufman, S. Metin, D. D. Saperstein, Physical Review B 39 (1989), 13053
|