跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 14:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧灼輝
研究生(外文):Juo-Hui Deng
論文名稱:以電化學合成的銀奈米粒子之金屬/矽油懸浮物介電性質之研究
論文名稱(外文):Study on Dielectric Properties of Metal/Silicone Oil Suspension Contains Electrochemically Synthesized Silver Nanoparticles
指導教授:康智傑黃建榮黃建榮引用關係
指導教授(外文):Chih-Chieh KangChien-Jung Huang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:73
中文關鍵詞:電化學奈米粒子界面活性劑電流變學懸浮液
外文關鍵詞:Electrochemicalnanoparticlesurfactantelectrorheologysuspension
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文是探討以電化學方法合成奈米尺寸的金屬粒子於界面活性劑溶液
中,金屬離子是被包覆於界面活性劑的微胞中而形成奈米粒子;根據本論文的研
究中,界面活性劑濃度, 外加的電流、電壓與成長溫度對於良好奈米粒子的合成
扮演了重要的角色於電化學的系統。從實驗的結果顯示出,銀奈米粒子的大小能
被界面活性劑濃度, 外加的電流、電壓與成長溫度所控制。也就是從 80 奈米到
10 奈米的銀奈米粒子大小,可隨著界面活性劑濃度, 外加的電流、電壓與成長
溫度所控制。隨著粒子尺寸變小,表面電漿共振帶的波峰位置於 430 nm 到 420
nm 波長範圍內,呈現出藍位移的現象。此外,懸浮液的介電損失和波峰頻率也
會隨著銀奈米粒子尺寸變小而逐步地增加。
Abstract
This article demonstrates that the nanoscale metal particles were synthesized via
electrochemical technique with two kind surfactants. Metal atoms are usually
wrapped by surfactant micelles in order to form metal nanoparticles. The surfactant
concentration, applied current、voltage and growth temperature are playing important
roles in formation of metal nanoparticles. Experimental results show that particles size
of the produced silver nanoparticles can be controlled by the surfactant concentration,
applied current、voltage and growth temperature. The size of silver nanoparticles is
controllable in the range from 80 to 10 nm with increasing the surfactant
concentration, applied current、voltage and growth temperature. The peak position of
surface plasmon resonance (SPR) band decreases as blue-shifted from 430 to 420 nm
with decreasing particle size. Furthermore, the dielectric loss and peak frequency of
the suspensions increase progressively with the decreasing of the particle size.
Contents
English Abstract………………………………………………………………………iv
Chinese Abstract……………………………………………………………………….v
Acknowledgment………………………………………………………………….….vi
Contents……………………………………………………………………………...vii
List of Table……………………………………………………………….…………...x
List of Figures….………………………….………………………………………….xi
Chapter 1 Introduction: Chinese Abstract……………………………………………..1
Chapter 1 Introduction………………………………………………………………...3
1.1 Metal nanoparticles………...................................................................3
1.1.1 Development of metal nanoparticles……….…………………...3
1.1.2 Fabrication methods of metal nanoparticles…..………...……...3
1.1.2.1 Physical method: laser irradiation….………………….4
1.1.2.2 Physical method: ball milling…….……………………4
1.1.2.3 Physical method: vapor-phase synthesis of
nanoparticles………………………………………...4
1.1.2.4 Chemical method: reduction by electrochemical
method…………….………………………………….5
1.1.2.5 Chemical method: chemical reduction of metal salts….5
1.1.2.6 Chemical method: thermal, photochemical, or
sonochemical decomposition………………………...6
1.1.2.7 Chemical method: displacement of ligands from
organometallic compounds….….….………..…..…...6
1.1.2.8 Chemical method: metal vapor synthesis…..………....7
1.1.2.9 Chemical method: nanoparticles adsorption on
support………...……….……………………………..7
1.1.2.10 Chemical method: colloids grafting on support….…..7
1.1.3 Surfactant characteristic in fabrication of metal nanoparticles by
electrochemical method…..……………………...……….…….7
1.1.3.1 General structure and characteristic for surfactants…...8
1.1.3.2 Micelle formation………………………….…………..8
1.1.3.3 Solubilization by solution of surfactant…….…………9
1.1.3.4 Surfactants: cetyltrimethylammonium bromide
(CTAB)……………………………………………….9
1.2 Suspensions for electrorheology…………………………..…….……11
1.2.1 Development of suspensions for electrorheology….…11
viii
1.2.2 kinds of suspensions for electrorheology……….……...13
1.2.2.1 Liquid continuous phase……………………………..13
1.2.2.2 Dispersed phase, solid particulate, heterogeneous ER
materials: inorganic oxide materials………………...13
1.2.2.3 Dispersed phase, solid particulate, heterogeneous ER
materials: non-oxide inorganic……………………...14
1.2.2.4 Dispersed phase, solid particulate, heterogeneous ER
materials: organic and polymeric materials……...…14
1.2.2.5 Liquid materials: homogeneous ER materials….…….14
1.2.2.6 Addities…….…………………………………………15
1.2.3 Properties of suspensions for electrorheology………………….15
1.2.3.1 Particle conductivity………….………………………15
1.2.3.2 Particle dielectric property…….……………………..16
1.2.3.3 Particle volume fraction…….………………………..16
1.2.3.4 Temperature………………………………………….17
1.2.3.5 Water content…………………...……………………17
1.2.3.6 Liquid medium……………….……………………....18
1.3 Motivation……………………………………………………………18
Chapter 2 Experimental: Chinese Abstract…………………………………………..20
Chapter 2 Experimental……………………………………………………………....21
2.1 Fabrication of silver nanoparticles by electrochemical method…......21
2.2 Preparation of suspension contains silver nanoparticles…………….21
2.3 Characterization of silver nanoparticles by electrochemical method.21
2.4 Dielectric analysis of suspension contains silver nanoparticles……..22
Chapter 3 Results and Discussions: Chinese Abstract……………………………….23
Chapter 3 Results and Discussions………………...…………………………………24
3.1 The effect of surfactant concentration…………………………….….24
3.1.1 Analysis of size and UV/vis absorption spectra of silver
nanoparticles……………………………….…………………...24
3.1.2 Analysis of transmission electron microscopy (TEM)………....25
3.1.3 Analysis of X-ray diffraction (XRD)………………………...…25
3.2 The effect of applied current………………………………….……...26
3.2.1 Analysis of UV/vis absorption spectrum ……………….……...27
3.2.2 Analysis of transmission electron microscopy (TEM)…...…….27
3.3 The effect of applied voltage………………………………………....28
3.3.1 Analysis of UV/vis absorption spectrum……………………….28
3.3.2 Analysis of transmission electron microscopy (TEM)…………29
3.4 The effect of growth temperature………………………………….…29
ix
3.4.1 Analysis of UV/vis absorption spectrum…………………….…29
3.4.2 Analysis of transmission electron microscopy (TEM)………....29
3.5 Dielectric loss of suspension contains silver nanoparticles…….…...30
Chapter 4 Conclusions: Chinese Abstract…………………………………………....31
Chapter 4 Conclusions……………………………………………………………….32
4.1 Conclusions…………………………………………………………..32
4.2 Future work……………………………………….………………….32
Reference……………………………………………………………………………..33
Reference
[1] F. Mafune, J. Kohno, Y. Takeda, T. Kondow and H. Sawabe, J. Phys. Chem.
submitted.
[2] A. Fojtik, A. Ber. Bunsen-Ges.Henglein, Phys. Chem. 1993, 97, pp.252.
[3] M. T. Reetz, W. Helbig and S. A. Quaiser, In Active Metals: Preparation,
Characterization, Applications; Fu¨ rstner, A., Ed.; VCH: New York, 1996;
pp.279.
[4] M. T. Reetz and W. Helbig, J. Am. Chem. Soc. 1994, 116, pp.7401.
[5] M. T. Reetz and S. A.Quaiser, Angew. Chem., Int. Ed. Engl. 1995, 34, pp.2240.
[6] J. D. Aiken and R. G. Finke, J. Mol. Catal. A: Chem. 1999, 145, pp.1.
[7] Aiken, J. D., III; Lin, Y.; Finke, R. G. J. Mol. Catal. A: Chem. 1996, 114, pp.29.
[8] Bradley, J. S.; Hill, E. W.; Behal, S.; Klein, C.; Chaudret, B.; Duteil, A. Chem.
Mater. 1992, 4, pp.1234.
[9] De Caro, D.; Bradley, J. S. New J. Chem. 1998, 22, pp.1267.
[10] Duteil, A.; Queau, R.; Chaudret, B.; Mazel, R.; Roucau, C.; Bradley, J. S. Chem.
Mater. 1993, 5, pp.341.
[11] Hirai, H.; Ohtaki, M.; Komiyama, M. Chem. Lett. 1986, pp.269.
[12] Toshima, N.; Ohtaki, M.; Teranishi, T. React. Polym. 1991, 15, pp.135.
[13] J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New
York, 1992.
[14] F. Oosawa, Polyelectrolytes, Marcel Dekker, New York, 1971.
[15] G. S. Manning, J. Chem. Phys. 1969, 51, pp.924.
[16] G.V. Ramanathan, J. Chem. Phys. 1988, 88, pp.3887.
[17] Block, H.; Kelly, J. P. J. Phys. D: Appl. Phys. 1988, 21, pp.1661.
[18] Halsay, T. C. Science 1992, 258, pp.761.
[19] Sim, I. S.; Kim, J. W.; Choi, H. J.; Kim, C. A.; Jhon, M. S. Chem. Mater. 2001,
13, pp.1243.
[20] Tajiri, K.; Ohta, K.; Nagaya, T.; Orihara, H.; Ishibashi, Y.; Doi, M.; Inoue, A. J.
Rheol. 1997, 41, pp.335.
[21] Klingenberg, D. J.; Zukoki, C. F. Langmuir 1990, 6, pp.15.
[22] Park, J. H.; Lim, Y. T.; Park, O. O. Macromol. Rapid Commun. 2001, 22,
pp.616.
[23] Kim, J. W.; Liu, F.; Choi, H. J.; Hong, S. H.; Joo, J. Polymer 2003, 44, pp.289.
[24] W.M. Winslow, J. Appl. Phys. 1949, 20, pp.1137.
[25] Z.P. Shulman, R.G. Gorodkin, E.V. Korobko, V.K. Gleb, J. Non-Newtonian
Fluid Mech. 1981, 8, pp.29.
[26] Y.F. Deinega, G.V. Vinogradov, Rheol. Acta 1984, 23, pp.636.
[27] H. Block, J.P. Kelly, J. Phys. D Appl. Phys. 1988, 21, pp.1661.
[28] Hao, T. Adv. Mater. 2001, 13, pp.1847.
[29] E.N. Andrade, C. Dodd, Nature 1939, 143, pp.26.
[30] E.N. Andrade, C. Dodd, R. Soc. Lond. Proc. A 1946, 187, pp.296.
[31] E.N. Andrade, C. Dodd, R. Soc. Lond. Proc. A 1951, 204, pp.449.
[32] E.N. Andrade, J. Hart, R. Soc. Lond. Proc. A 1954, 225, pp.463.
[33] B.E. Conway, A. Dobry-Duclaux, in: F.R. EirichŽEd.., Rheology: Theory and
Applications, 3, Academic Press, NY, 1960.
[34] W.M. Winslow, U.S. Patent 2417850, 1947.
[35] Yu.F. Deinega, G.V. Vinogradov, Colloid J. 1962, 24, pp.570.
[36] D.L. Klass, T.W. Martinek, J. Appl. Phys. 1967, 38, pp.67.
[37] D.L. Klass, T.W. Martinek, J. Appl. Phys. 1967, 38, pp.75.
[38] H. Uejima, Jpn. J. Appl. Phys. 1972, 11, pp.319.
[39] Yu.F. Deinega, G.V. Vinogradov, Rheol. Acta 1984, 23, pp.636.
[40] J.E. Stangroom, I. Harness, GB Patent 2153372, 1985.
[41] J.E. Stangroom, Phys. Techn. 1983, 14, pp.290.
[42] H. Block, J.P. Kelly, GB Patent 2170510, 1985.
[43] D.G. Bytt, GB Patent 2189803, 1987.
[44] F.E. Filisko, W.E. Amstrong, U.S. Patent 4744914, 1988.
[45] J.J. Wysocki, J. Adama, W. Hass, J. Appl. Phys. 1969, 40, pp.3865.
[46] T. Honda, T. Sasada, K. Kurokawa, Jpn. J. Appl. Phys. 1978, 17, pp.1525.
[47] I.K. Yang, A.D. Shine, J. Rheol. 1992, 36, pp.1079.
[48] A. Inoue, S. Maniwa, European Patent 478034A1, 1992.
[49] H. Block, J.P. Kelley, J. Phys. D.: Appl. Phys. 1988, 21, pp.1661.
[50] H. Tomizawa, M. Kanbara, N. Yoshimura, J. Mitsui, H. Hirano, European Patent
0342041, 1989.
[51] H. Block, J.P. Kelley, A. Qin, T. Watson, Langmuir 1990, 6, pp.6.
[52] K.D. Weiss, D.A. Nixon, J.D. Carlson, A.J. Margida, Polym. Preprints 1994, 35,
pp. 325.
[53] T. Hao, J. Colloid Interface Sci. 1998, 206, pp.240.
[54] A. Kawai, K. Uchida, K. Kamiya, A. Gotoh, S. Yoda, K. Urabe et al., Int. J. Mod.
Phys. B 1996, 10, pp.2849.
[55] F. ikazaki, A. Kawai, T. Kawakami, K. Edamura, K. Sakuri, H. Anzai et al., J.
Phys. D: Appl. Phys. 1998, 31, pp.336.
[56] T. Hao, Z. Xu, Y. Xu, J. Colloid Interface Sci. 1997, 190, pp.334.
[57] T. Hao, Y. Chen, Z. Xu, Y. Xu, Y. Huang, Chin. J. Polym. Sci. 1994, 12, pp.97.
[58] T. Garino, A. Adolf, B. Hance, in: R. Tao ŽEd.., Proc. Intern. Conf. on ER
Fluids, World Scientific, 1992, pp.167.
[59] G.. Schon and U. Silmon, Colloid Polym. Sci. 1995, 273, pp. 202.
[60] V. L. Colvin, A. N. Goldstein and A. P. Alivisatos, J. Am. Chem. Soc. 1992, 114,
pp. 5221.
[61] M. Haruta and M. Date, Applied Catalysis A: General 2001, 222, pp. 427.
[62] K. I. Kuge, M. Arisawa, N. Aoki and A. Hasegawa, Jpn. J. Appl. Phys. 2000, 39,
pp. 6550.
[63. P. V. Kamat, M. Flumiani and G. V. Hartland, J. Phys. Chem. B. 1998, 112, pp.
3123.
[64] Winslow WM. US Patent Specification 2417850, 1947.
[65] Wu CW, Conrad H. Phys Rev E 1997, 56, pp. 5789.
[66] Whitte M, Bullough WA, Peel DJ, Firoozian R. Phys Rev E 1994, 49, pp. 5249.
[67] Hao T. Appl Phys Lett 1997, 70, pp.1956.
[68] Hao T, Kawai A, Ikazaki F. Langmuir 1998, 14, pp.1256.
[69] J. Klingenberg, F. Van Swol, and C. F. Zukoski, J. Chem. Phys. 1989, 91,
pp.7888.
[70] M. Adriani and A. P. Gast, Phys. Fluids 1988, 31, pp.2757.
[71] Tao and J. M. Sun, Phys. Rev. Lett. 1991, 67, pp.398.
[72] R. Torr and T. C. Halsey, Phys. Rev. A 1992, 45, pp.8617.
[73] Chen, A. F. Sprecher, and H. Conrad, J. Appl. Phys. 1991, 70, pp.6796.
[74] C. Hass, Phys. Rev. E 1993, 47, pp.3362.
[75] C. Chew and P. N. Sen, J. Chem. Phys. 1982, 77, pp.4683.
[76] D. Myers, VCH purlishers, Inc. surfactant, interfaces and colloids, Chapter-15,
1991.
[77] M. Czerniawski, Roczn. Chem. 1966, 40, pp. 1935.
[78] Cheang-Wong, J. C., Oliver, A and Rpiz, J., J. phys: Conden. Matter. 2001, 13,
pp. 10207.
[79] Zhengxin, L., Honghong, W. and Hao, L., Appl. Phys. Lett, 1998, 72, pp.1823.
[80] Genzel, L., Martin, T. P. and Kreibig, U., Z. phys. 1975, 21, pp.339.
[81] de Heer, W., Selby, K., Krensin, V., Masui, J., Vollmer, M., Chatelain, A., and
Knight, W., Phys. Rev. Lett. 1987, 59, pp.1805.
[82] R. G. Freeman, K. C. Graber, K. J. Allison, R. M. Bright, Science. 1995, 267,
pp.1629.
[83] C. Shaowei and Y. Yiyun, J. Am. Chem. Soc. 2002, 124, pp.5280.
[84] M. Haruta and M. Date, Applied Catalysis A: General 2001, 222, pp.427.
[85] C. H. Hamann, A. Hamnett and W. Vielstich, Electrochemistry, Wiley-VCH
Publishers, Inc.: New York, Chapter-4 , 1998.
[86. Mie, G. Ann. Phys. 1908, 25, pp. 377.
[87] Kerker, M. The Scattering of Light and Other Electromagnetic Radiation;
Academic Press: New York, 1969.
[88] M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley Publishers, Inc.:
New York, Ch. 3. , 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top