跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林清祺
研究生(外文):Chin-Chi Lin
論文名稱:預應變與預時效對鋁合金雷射銲接件與素材之影響
論文名稱(外文):The effect of pre-strain and pre-aging on laser weldment and base metal of aluminum alloys
指導教授:郭聰源
指導教授(外文):Tsung-Yuan Kuo
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:85
中文關鍵詞:預應變預時效鋁合金
外文關鍵詞:Pre-strainPre-agingaluminum alloy
相關次數:
  • 被引用被引用:4
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用材料為厚度1mm之AA6022-T4E29鋁合金薄板,第一部份針對母材試件與其經Nd:YAG雷射走銲之試件,分別施予0%、3%、6% 及0%、3%之預應變,再以模擬汽車板金之塗裝烘烤程序(Paint Bake Cycling, PBC)或175℃/1000min條件進行熱處理。以穿透式電子顯微鏡(TEM)分析不同預應變與熱處理程序後之析出相與顯微結構的變化,並探討這些變化對母材與銲件之機械性質的影響。第二部份對母材施予T4E29+預應變+預時效+PBC、重新固溶+T4(8days)+預應變+預時效+PBC、T4E29+預時效+預應變+PBC 三種不同處理程序,其中預應變為0%、3%、6%,預時效溫度為175℃,時間分別為100 min、300 min、500 min、1000 min,探討預應變與預時效之影響與最佳之預時效時間。
第一部分之結果顯示,在母材試件:隨預應變(差排密度)的增加,母材(T4E29)與其經PBC處理試件之降伏強度與硬度即隨之提升,抗拉強度並沒有明顯改變,此外,經PBC處理後之試件,抗拉、降伏強度與硬度皆有少許的提升;而母材經175℃/1000min處理試件因有β"之強化相析出,使得降伏強度與硬度較上兩組試件為高,但隨預應變量的增加,由於β"相粗大化並有過時效之Q'相產生而使硬度與強度下降。在銲接試件:未經熱處理與經PBC處理試件因隨預應變的增加,差排亦隨之的增生,故降伏強度與硬度隨預應變量增加而升高;經175℃/1000min處理試件則因β"相的析出,而使其強度較前兩組試件為高,且亦隨預應變量的增加而升高。第二部份結果顯示,整體之抗拉與降伏強度以T4E29+預時效+預應變+PBC試件最高,T4E29+預應變+預時效+PBC則次之,重新固溶+T4(8days) +預應變+預時效+PBC之試件最低。T4E29+預時效+預應變+PBC之試件,在預時效1000min時具有最高之平均抗拉與降伏強度;T4E29+預應變+預時效+PBC與重新固溶+ T4(8days)+預應變+預時效+PBC試件之平均最高抗拉強度,分別是在預時效0 min與300 min,而平均降伏強度則皆在預時效500min處。
This study includes two parts. In part one, AA6022-T4E29 aluminum alloy sheet parent metal of 0%, 3%, and 6% pre-strain together with Nd : YAG laser welded AA6022-T4E29 weldment of 0% and 3% pre-strain were heat treated to simulate the Paint Bake Cycling (PBC) or 175℃/1000 min. Transmission electron microscope was utilized to analyze the characteristics of precipitates and microstructure after pre-strain and heat treatment. Subsequently, the effects of precipitates and microstructure variation on the mechanical properties of parent metal and weldment were discussed. In part two, the parent metal is proceeded one of three kinds of treated processes which are T4E29 + pre-strain + pre-aging + PBC (TPSPAP), solution treated (at 560℃/20min) + T4(8days) + pre-strain + pre-aging + PBC (STPSPAP), and T4E29 + pre-aging + pre-strain +PBC (TPAPSP) to investigate the difference between mechanism properties and the best aging treated time. The level of the pre-strain and pre-aging time are 0%, 3%, 6% and 100min, 300min, 500min, 1000min, respectively.
The results of part one, the yield strength of the parent metal both with the PBC process and without the heat treatment will increase with the increasing pre-strain accordingly. After the heat treatment with 175℃/ 1000 min, because of the β" phase precipitated in the matrix, it makes both the yield strength and the hardness are higher than the specimen both with and without the PBC. While the pre-strain increases continuously, the β" phase transformed into coarser and over aged Q' phase to reduce hardness and strength. In the weldment, because of the dislocation increased in the weld metal, both with the PBC process and without the heat treatment, the yield strength increases as pre-strain increases. After the PBC process, because of the precipitation produced, the tensile strength and the yield strength are higher than the weldment without the heat treatment. Further, the strength of weldment with the PBC process is higher than the strength of weldment without the heat treatment. However, because after the heat treatment with 175℃/1000 min, the β" phase were produced, the strength is higher than the former two series of specimens and increases with increasing pre-strain. Part two’s results indicate the specimens treated under TPAPSP process have the highest tensile strength or the yield strength, while that treated under STPSPAP process have the lowest. The highest of the tensile strength in TPAPSP specimens is at the pre-aging 1000 min, while that in the processing of TPSPAP and STPSPAP are separately at pre-aging 0 min and 300min, and the yield strength of both series specimens are at the pre-aging 500min.
摘要 I
英文摘要 II
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 文獻回顧 3
第三章 理論基礎 7
3-1 雷射基礎 7
3-1-1 基本介紹. 7
3-1-2 雷射銲接原理 8
3-1-3 雷射參數之影響 9
3-2 Al-Mg-Si 合金之析出機制 13
3-2-1 AA6022析出程序與析出物之種類. 13
3-2-2 DSC與TEM對析出物之分析 14
3-2-3 時效後之析出對機械性質之影響 16
3-2-4 自然時效、預時效、人工時效對機械性質的影響 17
3-2-5 預應變對析出之影響 19
第四章 實驗規劃與流程 22
4-1實驗規劃 22
4-2實驗流程 22
4-2-1材料前置處理與銲接試驗 22
4-2-2熱處理試驗 25
4-2-3機械性質試驗 25
4-2-4TEM顯微金相試驗 26
4-3實驗之儀器設備 27
第五章 結果與討論 32
5-1拉伸與硬度試驗 32
5-1-1 母材試件 32
5-1-2 銲接試件 33
5-2 斷口形貌分析 34
5-3 顯微結構 35
5-3-1 母材試件 35
5-3-2 銲接試件 37
5-4素材之預應變與預時效程序對機械性質之影響 39
5-4-1預時效與預應變程序變化 39
5-4-2綜合結果 42
第六章 結論 43
第七章 參考文獻 80
1.W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A. Vieregge, “Recent Development in Aluminium Alloys for the Automotive Industry”, Materials Science and Engineering A280, 2000, pp.37-49
2.T. Moons, P. Ratchev, P.D. Smet, B. Verlinden, P.V. Houtte, “A Comparative Study of Two Al-Mg-Si Alloy for Automotive Applications”, Scripta Materialia, 1996, V35, N8, pp.939-945
3.W.F. Miao and D.E. Laughlin, “Precipitation Hardening in Aluminum Alloy 6022”, Scripta Materialia, 1999, V.40, N.7, pp.873-878
4.M. Takeda, F. Ohkubo, T. Shirai, “Stability of Metastable Phases and Microstructures in the Ageing Process of Al-Mg-Si Ternary Alloys”, Journal of Materials Science, 1998, V.33, pp.2385-2390.
5.W.F. Miao, D.E. Laughlin, “A Differential Scanning Calorimetry Study of Aluminum Alloy 6111 With Different Pre-aging Treatments”, Journal of Materials Science Letters, 2000, V.19, pp.201-203.
6.A.K. Gupta, D.J. Lloyd, S.A. Court, “Precipitation Hardening Processes in an Al-0.4%Mg-1.3%Si-0.25%Fe Aluminum Alloy”, Materials Science and Engineering A304, 2001, pp.140-146.
7.W.F. Miao, D.E. Laughlin, “Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022, Metallurgical and Materials Transactions A., Vol.31A, pp.361-371, 1999.
8.J.D. Bryants, “The Effects of Preaging Treatments on Aging Kinetics and Mechanical Properties in AA6111 Aluminum Autobody Sheet”, Metallurgical and Materials Transactions A., Vol.30A, pp.1999-2006, 2000.
9.Y. Birol, “Pre-aging to Improve Bake Hardening in A Twin-roll Cast Al-Mg-Si Alloy”, Materials Science and Engineering A, 2005, Vol. 391, pp.175-180.
10.G..K. Quanoo, S. Yannacopoulos and A.K. Gupta, “Strengthening Characteristic of AA6111 aluminum”, Canadian Metallurgical Quarterly, , 2001 ,Vol.40, No. 2, pp 211-220.
11.Y. Birol, “Pre-straining to Improve The Bake Hardening Response of A Twin-Roll Cast Al-Mg-Si Alloy”, Scripta Materialia, 2005, Vol. 52, pp.169-173.
12.R.S. Yassar, D.P. Field, H. Weiland, “The Effect of Predeformation on The β" and β' Precipitates and The Role of Q' Phase in an Al-Mg-Si Alloy AA6022”, Scripta Materialia, 2005, Vol. 53, pp.299-303.
13.B. Irving, “Automotive Engineer Plunge into Tomorrow’s Joining Problems”, Welding Journal, 1994, Vol.72, pp.47-50.
14.J.K. Baysore, “Laser Beam Welding and Formability of Tailored Blanks”, Welding Journal, 1995, Vol. 74, pp.345-352.
15.H.R. Shakeri, A. Buste, M.J. Worswick, J.A. Clarke, F. Feng, M. Jain, M. Finn, “Study of Damage Initiation and Fracture in Aluminum Tailor Welded Blanks Made Via Different Welding Techniques”, Journal Of Light Metals, 2002, Vol. 2, pp.95-110.
16.F.I. Saunders, R.H. Wagoner, “Forming of Tailor-Welded Blanks”, Metallurgical and Materials Transactions A., 1996, Vol. 27A, pp. 2605-2626.
17.B. Thorstensen, J. Mazumder, “Laser Welding of The Aluminium Alloy AA6082”, Proc. 4th Int. Conf. Laser in Manufacturing, 1987, pp.203-210.
18.O. Kessler, C. Prinz, F. Hoffmann, P. Mayr, “Age Hardening of Laser Beam Welded Aluminium Alloy 6082 Using Scandium Containing Filler Metal”, Materials Science and Technology, 2002, Vol. 18, pp.913-916.
19.B. Kami, “Lightweight Body Panel Materials”, Automotive Engineering International (SAE), 19-22, Dec., 1998.
20.Nico A. J. Langrak and S. P. Kragtijk, Lightweight Car Body Deign”, Automotive Engineering International (SAE), pp.106-110, 1998.
21.I. Stol, “Selecting Manufacturing Processes for Automotive Aluminum Space Frames”, Welding Journal, Vol. 73, pp.57-65, 1994.
22.Z. Li and S.L. Gobbi, “Laser Welding for Lightweight Structures”, Journal of Materials Processing Technology, Vol.70, pp.137-144, 1997
23.J. Larsson : Proc.7th Nordic Conf. on Laser Processing of Materials, (ed. J.C. Ion et al.), Lappeenranta, Lappeenranta University of Technology, 1999, pp.26-37,.
24.M. Naeem and S.T. Riches, Conf. on Materials for Less Weight Vehicles-Laser Welding of Aluminum Alloy Sheet for the Automotive Industry, London, UK, pp.185-192, 1997.
25.I.A. Jones, S.T. Riches, J.W. Yoon and E.R. Wallach, “Laser Welding of Aluminum Alloys”, TWI Journal, 1998, Vol.7, No2., pp.421-481.
26.B. Irving, “Welding the Four Most Popular Aluminum Alloys”, Welding Journal, 1994, Vol.73, pp.51-55.
27.B. Irving, “Interest in Welded Aluminum Automobiles Gathers Momentum Worldwide”, Welding Journal, 1998, Vol.77, pp.31-35.
28.邱先拿, 管材液壓成形技術之應用狀況與發展之動向, 機械月刊, 2000, 26卷, 20期, pp.369-383.
29.F. Natsumi, “Laser Welding Technology for Joining Different Sheet Metals for One-Piece Stamping”, JSAE Review, 1991, Vol.12, No.3, pp.58-63.
30.B. Irving, “Welding Tailored Blanks is Hot Issue Automakers”, Welding Journal, 1995, Vol. 74, pp.49-52.
31.S.A. Westgate and M. Kimchi, “A New Process for Tailored Blank Production”, Welding Journal, 1995, Vol. 74, pp.45-48.
32.M. Paster, H. Zhao, R.P. Martukanity and T. Debroy, “Porosity Underfill and Magnesium Loss during Continuous Wave Nd:YAG Laser Welding of Thin Plates of Aluminum Alloys 5182 and 5754 , Welding Journal, 1999, Vol. 78, pp.207s-216s.
33.J. Cieslak and P.W. Fuerschback, “On the Welding Weldability, Composition, and Hardness of Pulsed and Continuous Nd:YAG Laser Welds in Aluminum Alloys 6061, 5456, and 5086, Metallurgical Transitions B, 1988, Vol. 19B, pp.319-329.
34.S.J. Murtha, USA Patent No. 6,129,792,2000
35.A.K. Gupta, D.J. Lloyd and M.J. Bull, Developments in Aluminum Use for Vehicle Design-The Properties and Characteristics of Two New Aluminum Automotive Closure Materials, SAE Inc., Warrendale, USA, 1996, pp.39-44.
36.R.G. Kamat, J.F. Butler, Jr., S.J. Mutha, F.S. Bovard, “Alloy 6022-T4E29 For Automotive Sheet Applications”, Materials Science Forum, 2002, Vol. 396-402, No.3, pp.1591-1596.
37.周敏傑, 劉決弘, 莊運清, 賴文郎, 楊志文, “雷射加工技術手冊”, 工業技術研究院機械工業研究所, 民國七十二年十二月.
38.W.M. Steen, “Laser Material Processing”, Springer-Verlag London Berlin Heidelberg New York Paris Tokyo Hong Kong Barcelona Budapest, pp113-114.
39.T. Fuhrich, P. Berger, H. Hugel, “Marangoni Effect in Laser Deep Penetration Welding of Steel”, Journal of Laser Applications, 2001, Vol. 13, No. 5, pp.178-186.
40.劉政益, Nd:YAG 雷射輸出波形形式與保護氣體對鎳基690合金銲接特性影響之研究”, 2004年7月.
41.T.Y. Kuo, S.L. Jenq, “Porosity reduction in Nd-YAG laser welding of stainless steel and inconel alloy by using a pulsed wave”, Journal of Physics D: Applied Physics, Vol. 38, No. 5, Mar 7, 2005, p 722-728.
42.林燕村, “鋁合金雷射銲接特性與成形性之關係研究”, 南台科技大學機械所碩士論文, 2003年6月.
43.S. Katayama, N. Seto, J.D. Kim, A. Matsunawa, “Formation Mechanism and Suppression Procedure of Porosity in High Power Laser Welding of Aluminum Alloys”, Section-C ICALEO, 1998, pp.24-33.
44.M. Pastor, H. Zhao, T. DebRoy, “Pore Formation and Composition Change During Continuous Wave Nd:YAG Laser Welding of Aluminum Alloys 5182 and 5754”, Pennsylvania State University, University Park, PA, United States, 1998, pp.455-460.
45.S. Katayama, N. Seto, M. Mizutani, A. Matsunawa, “Formation Mechanism of Porosity in High Power YAG Laser Welding”, Section-C ICALEO, 2000, pp.16-25.
46.A. Matsunawa, “Problems and Solutions in Deep Penetration Laser Welding”, Science and Technology of Welding and Joining, 2001, Vol. 6, No. 6, pp.351-354.
47.K. Takahashi, B. Mehmetli, S. Sato, “Influence of Shielding Gas and Laser Irradiation Conditions on Porosity Formation in CO2 Laser Welding of Aluminium Alloy”, Welding International, 1998, Vol. 12, No. 5, pp.347-353.
48.A. Haboudou, P. Peyre, A. B.Vannes, G. Peix, “Reduction of Porosity Content Generated During Nd:YAG Laser Welding of A356 and AA5083 Aluminium Alloys”, Materials Science and Engineering A, 2003, Vol. 363, pp.40-52.
49.A. Matsunawa, J.D. Kim, S. Katayama, “Porosity Formation in Laser Welding –Mechanisms and Suppression Methods”, Section-G ICALEO, 1997, pp.73-82.
50.S. Tsukamoto, G. Arakane, I. Kawaguchi, H. Honda, “Keyhole Behaviour in Power Laser Welding of Thick Steel Plates – Formation Mechanism and Suppression of Weld Defects -”,LMP Section A, pp179-183.
51.S. Katayama, S. Kihsaka, M. Mizutani, K. Nishizawa, A. Matsunawa, “Pulse Shape Optimization For Defect Prevention in Pulsed Laser Welding of Stainless Steels”, ICALEO, 1993, pp487-497.
52.S. Tsukamoto, I. Kawaguchi, G. Arakane, H. Honda, “Suppression of Porosity Using Pulse Modulation of Laser Power in 20kW CO2 Laser Welding”, Proc. of ICALEO, 2001,pp.607-615
53.I. Dutta, S.M. Allen, Journal of Materials Science Letters., pp.323, 1991
54.M. Murayama, K. Hono, “Per-precipitate Clusters and Precipitation Processes in Al-Mg-Si Alloys”, Acta Mater., 1999, Vol. 47, No. 5, pp.1537-1548.
55.R.P. Wahi, M.V. Heimendahl, “On The Occurrence of The Metastable Phase β" in An Al-Mg-Si Alloy”, Physica Status Solidi. A: Applied Research, 1974, Vol. 24, pp.607-612.
56.S.J. Andersen, H.W. Zandergen, J. Jansen, C. Trseholt, U. Tundal, O. Reiso, “The Crystal Structure of The β" Phase inf Al-Mg-Si Alloys”, Acta Materialia, 1998, Vol. 46, No. 9, pp.3283-3298.
57.G.A. Edwards, K. Tiller, G. L. Dunlop, M.J. Couper, “The Precipitation Sequence in Al-Mg-Si Alloys”, Acta Materialia, 1998, Vol. 46, No. 11, pp.3893-3904.
58.K. Matsuda, S. Tada, S. Ikeno, T. Sato, A. Kamio, “Crestal System of Rod-Shaped Precipitates in An Al-1.0mass%Mg2Si -0.4mass%Si Alloy”, Scripta Metallurgical et Materialia, 1995, Vol. 32, No. 8, pp.1175-1180.
59.K. Matsuda, T. Naoi, Y. Uettani, T. Sato, A. Kamio, S. Ikeno, “High Resolution Energy-Filtering Transmission Electron Microscopy For Equilibrium β-Phase in An Al-Mg-Si Allloy”, Scripta Materialia, 1999, Vol.4, No. 4, pp.379-383.
60.M. Sata, Y. Sasaki, M. Kikuch, Z. Yan, M. Matsuo, Processing 5th International Conference on Al Alloys, 1996, pp.821-826.
61.J.J. Gracio, F. barlat, E.F. Rauch, P.T. Jones, V.F. Neto, A.B. Lopes, “Artificial Aging and Shear Deformation Behaviour of 6022 Aluminium Alloy”, International Journal of Plasticity, 2004, Vol. 20, pp.427-445.
62.S.E. Urreta, F. Louchet, A. Ghilarducci, “Fracture Behaviour of an Al-Mg-Si Industrial Alloy”, Materials Science and Engineering A, 2001, Vol. 302, pp.300-307.
63.G.B. Burger, A.K. Gupta, P.W. Jeffrey, D.J. Lloyd, “Microstructural Control of Aluminum Sheet Used in Automotive Applications”, Materials Characterization, 1995, Vol. 35, pp.23-39.
64.M.J. Cieslak, P.W. Fuerschbach, “On The Weldability Composition and Hardness of Pulsed and Continuous Nd:YAG Laser Welds in Aluminum Alloy 6061 5456 and 5083”, Metallugical Transaction B, 1988, Vol. 19B, pp.319-329.
65.L. Shiyong, L. Yi, M. Jyotirmoy, “TEM Study of AA6111 Weld by Pulsed YAG Lasers”, Microsc. Microanal.,2002, pp.1452-1453.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top