跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑭原
研究生(外文):Tang-Yuan Chen
論文名稱:塑膠微流體晶片低溫接合技術之研發及在塑膠微型幫浦之應用
論文名稱(外文):Low-Temperature Bonding Technique for Plastic Microfluidic Chips and its Applications on Plastic Diffuser Micropumps
指導教授:許藝菊許藝菊引用關係
指導教授(外文):Yi-Chu Hsu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:64
中文關鍵詞:壓克力塑膠微型幫浦壓克力結合
外文關鍵詞:PMMA bondPlastic diffuser icropumps
相關次數:
  • 被引用被引用:8
  • 點閱點閱:885
  • 評分評分:
  • 下載下載:299
  • 收藏至我的研究室書目清單書目收藏:2
本篇研究的晶片製程是利用微熱壓技術以產生微流道塑膠元件,一開始的鎳模製程是經由塑膠光罩圖形定義在矽晶圓片上,接著再利用電鑄的方式所製成,再將原本鎳模上的立體微流道結構,以熱壓技術轉印至塑膠基材上 (Polymethyl Methacrylate, PMMA),最後再進行低溫結合塑膠晶片而形成元件。在此低溫結合技術中有結合深度、壓力、溶劑選擇等參數待決定,為節省實驗之次數,本研究利用田口法直交表(L934)求得流道損失率的最佳化參數為使用異丙醇、結合溫度60℃、施加壓力0.15 kg/cm2、持壓時間為5分鐘。而此完成的試片有二大優點:一是抗拉力量為179 kgf/cm2(17.55 Mpa),是傳統結合技術的2~15倍;二是由於所使用的材料是便宜且可拋棄的高分子材料,鎳模將可重複地翻製塑膠元件,故可降低製作之成本。
本篇研究一種相較於傳統熱壓接合,低溫、低壓、低成本且省時的微流體塑膠晶片接合技術,並將其技術應用在微型幫浦,成功地利用壓電材料做為驅動源,達到液體抽動的目地。塑膠幫浦的結構是利用直徑20 mm的螐鳴片和一對擴散孔組組成,而流室的直徑及深度為6 mm與200 μm,使用的工作流體為去離子水,實驗結果得知,固定提供電壓100 VPP,掃頻自50 Hz至1 kHz,而得到最大位移時的頻率為400 Hz,其最大流量53.6 µl/min。
A new technique for bonding of polymer micro-fluidic devices has been developed. This method can easily bond biochips with complex patterns. By using a patterned Ni mold, the micro-channel structures on Poly-Methyl Meth-Acrylate (PMMA) substrates were generated by one-step hot embossing procedure and bonding of low temperature. In contrast with the traditional thermal bonding, the method presents low-temperature and low-pressure packaging for polymer micro-fluidic platforms. Furthermore, the tensile strength of the disposable plastic biochip was 179 kgf., which is 2 to 15 times greater than that of conventional methods. This paper also applied this technique on plastic diffuser micro-pumps, based on piezoelectric actuation. The pump was made of -PMMA, and the diameter and depth of the pump chamber was 6 mm and 200 mm, respectively. The working fluid was non-degassed de-ionized (DI) water. The flow rate of 53.6 ml/min was obtained at a 100 Vpp and 400 Hz square wave drivin g signal.
目  次
中文摘要 i
英文摘要 ii
誌謝 iii
目次 iv
表目錄 vi
圖目錄 vii

第一章 緒論 1
1.1前言 1
1.2塑膠晶片 2
1.3研究目的與動機 3
1.4文獻回顧 3
1.4.1接合技術 3
1.4.2壓克力接合技術 7
1.5論文架構 8

第二章 相關理論探討 9
2.1晶片設計與原理 9
2.1.1單一流道無閥式塑膠微型幫浦設計原理 9
2.1.2單一流道無閥式塑膠微型幫浦設計 13
2.2 傅立葉轉換紅外光譜儀-減弱全反射原理儀 14
2.3電鑄原理 15
2.4紫外光-可見光光譜儀 16
2.5 CO2雷射光雕機 16
2.6 田口品質工程簡介 17
2.6.1 田口品質工程設計、分析與最佳參數選擇 23
2.7 蜂鳴片 23
2.8 微影製程 27

第三章 試片製作流程 29
3.1塑膠幫浦製程 29
3.1.1無塵室製程 30
3.1.2電鑄製程 35
3.1.3壓克力流道試片製程 38
3.2塑膠晶片之低溫化學接合 40
3.3塑膠晶片之田口結合參數設計 42
3.4最佳重量負荷參數 45
3.5結合性測試 46
3.6結合密封度測試 47

第四章 實驗結果與分析 48
4.1田口分析 48
4.2表面粗糙度 48
4.3 FTIR-ATR分析結果 48
4.4單一流道無閥式塑膠微型幫浦測試 49

第五章 結論 52

參考文獻 54
附錄
A 壓克力材料的特性 53
作者簡介 57
參考文獻
1. 賴建芳, 林裕成, “微機電系統製程之接合技術”, 機械月刊, 第二 十五卷第十一期, pp. 314-321, 民國八十八年十一月
2. M. Stjernstr om, J. Roeraade, “Method for fabrication of microfluidic systems in glass”, Journal of Micromechanics and Microengineering., 8,pp.33-38 (1998).
3. A. Han, K. W. Oh, S. Bhansali, H. T. Henderson, C. H. Ahn, “A low temperature biochemically compatible bonding technique using fluoropolymers for biochemical microfluidic systems”, MEMS 2000 IEEE, pp. 414-418(2000).
4. H. C. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, J. Y. LEE, “Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics”, Proceedings of the IEEE, 92, pp.154-173 (2004)
5. Y. C. Su, L. Lin, “Localized plastic bonding for micro assemebly, packaging and liquid encapsulation”, IEEE, pp. 50-53 (2001).
6. R. T. Kelly, A. T. Woolley, “Thermal Bonding of Polymeric Capillary Electrophoresis Microdevices in Water”, Analytical Chemistry, 75, pp.1941-1945 (2003).
7. Z. Chen, Y. Gao, J. Lin, R. Su, Y. Xie, “Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template”, Journal of Chromatography A, pp. 239-245(2004).
8. A. Berthold, L. Nicola, P.M. Sarro, M.J. Vellekoop, “Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers”, Sensors and Actuators A, 82, pp. 224-228 (2000).
9. T. Ito, K. Sobue, S. Ohya, “Water glass bonding for micro-total analysis system”, Sensors and Actuators B, 81, pp. 187-195 (2001).
10. H. Nakanishi, T. Nishimoto, R. Nakamura, A. Yotsumoto, T. Yoshida, S. Shoji, “Studies on SiO–SiO bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS”, Sensors and Actuators A,79, pp. 237-244 (2000).
11. J. Wang, M. Pumera, M. P. Chatrathi, A. Escarpa1, R. Konrad, A. Griebel, W. Dorner, H. Lowe, ”Towards disposable lab-on-a-chip Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection”, Electrophoresis, 23, pp. 596–601 (2002).
12. S. Lai, X. Cao, L. J. Lee, “A Packaging Technique for Polymer Microfluidic Platforms”. Analytical Chemistry, 76, pp. 1175-1183 (2004).
13. H. Becker, C. Gartner, ”Polymer microfabrication methods for microfluidic analytical applications”, Electrophoresis, 21, pp. 12-26
14.Martin M P, Matson D W and Bennett W D “Fabrication of plastic microfluidic components”, Proc SPIE, 3515 172–6, 1998
15.A Yussuf, I Sbarski “Microwave welding of polymeric-microfluidic devices”, J. Micromesh. Microeng, 15 1692–1699, 2005)
16. H. Mekaru, T. Yamada, S. Yan, T. Hattori, “Microfabrication by hot embossing and injection molding at LASTI Microsystem Technologies”, Springer-Verlag, 10 682–688, 2004
17. Nguyen N. T., Huang X.Y. and Toh K.C., "MEMS-micropumps: A Review", Journal of Fluids Engineering,Vol.124, pp.384-392, 2002
18. Peter Woias, "Micropumps-past, progress and future prospects", Sensors and Actuators B, Vol 105, pp 28-38, 2005.
19. Laser, DJ, and JG Santiago, "A review of micropumps ", J. of Micromechanics and Microengineering vol. 14, pp.R35-R64, 20
20. Pol F. C. M. van de, "A pump based on micro-engineering techniques", Thesis, University of Twente, the Netherlands, 1989.
21. Takeshi Morita, "Miniature Piezoelectric motors , " Sensors and actuators A, 103 (2003) 191-300
22. A. Olsson, "Valve-Less Diffuser Micropumps", Royal Institute of Technology, Stockholm, Sweden, 1998.
23. A. Olsson, G. Stemme, and E. Stemme, "Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps", Sensors and Actuators A, Vol 84, No 1-2, pp165-175, 2000.
24. 劉光興,"蠕動無閥式微幫浦之鑑別與分析",國立清華大學動力機械工程學系86 碩士班論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top