跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/12 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱晉億
研究生(外文):Chin-Yi Chiu
論文名稱:低維度奈米結構氧化鋅之製備與特性量測
論文名稱(外文):Synthesis and Characterization of low-dimensional nanostructured ZnO
指導教授:林克默林克默引用關係
指導教授(外文):K. Lin
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:72
中文關鍵詞:氧化鋅奈米柱氣液固法
外文關鍵詞:ZnOnanorodVLS method
相關次數:
  • 被引用被引用:9
  • 點閱點閱:494
  • 評分評分:
  • 下載下載:158
  • 收藏至我的研究室書目清單書目收藏:1
本文探討利用氣-液-固法在矽晶圓上合成出氧化鋅低維度奈米結構之實驗結果。本實驗中以熱氧化層作為緩衝層,並以Au、Cu、Pt作為催化劑,藉由改變氣體流量、成長時間及成長溫度等因素,探討這些變因對氧化鋅奈米柱成長及特性之影響。利用FEMLAB軟體來輔助了解VLS法於不同載氣流量、溫度時之流場與溫度分佈之變化情形,以便實際實驗時調整瓷舟和試片之相對位置。二階段成長法中,利用MATLAB軟體計算金薄膜經快速退火爐(RTA)用不同退火溫度及退火時間成長金顆粒,其粒徑大小及所佔之百分比例,找尋不同需求而最合適生長奈米結構的參數。
經由FE-SEM、TEM、XRD及場發射機台等儀器分析顯示,氧化鋅奈米柱會隨成長時間增加而增長,在氣流量20sccm、成長溫度950℃、成長時間90分鐘之奈米柱長約數微米、直徑約200奈米,經XRD與TEM檢測為纖鋅礦結構。使用金催化劑之最佳之場發射起始電場(turn-on field)於5.539 V/μm,最大電流密度為1.097mA/cm2;使用銅催化劑之最佳之場發射起始電場於6.7V/μm,最大電流密度為7.37mA/cm2。二階段成長出奈米線,奈米線長約3微米、直徑約80奈米。
In this study, we investigated the vapor-liquid-solid (VLS) growth mechanism of low dimensional ZnO nanostructures (nanorods, NRs and nanowires, NWs) on silicon wafers. In the experiments, thermal silicon oxide layer was used as buffer layer, Au, Cu and Pt were used as catalytic agents. The growth mechanism and properties of ZnO nanorods were then discussed by controlling factors such as the amount of air flow, growth time, and growth temperature, etc. The Finite element analysis software FEMLAB was used to understand the change of convection field and temperature distribution with VLS method under different amounts of air flow and temperatures so that the relative locations of the porcelain boat and the probe can be adjusted in the experiments. After growing metal dots with a golden film in RTA under different annealing temperatures and annealing time in the two-steps growth, MATLAB was used to calculate the diameter of the metal dots and their proportion so that the most suitable parameters for growing nanostructure can be found.
The analysis results with FE-SEM, TEM, XRD and field emission I-V characterization showed that the length of ZnO nanorods increased with the growth time. Under 20 sccm, growth temperature 950℃, and a growth time of 90 minutes, the length of the nanorods were about several m, and the diameter was about 300 nm. The inspection with XRD and TEM showed that its structure is Wurtzite. Using gold as catalyst agent, the best turn-on field of field emission was 5.539 V/μm, and the largest current density was 1.097mA/cm2. Using copper as catalyst agent, the best turn-on field of field emission was 1.097mA/cm2, and the largest current density was 7.37mA/cm2. Nanowires grown in two steps have a length of 3μm and a diameter of 80nm.
摘要
英文摘要
第一章 緒論…….............................................................................................................1
1.1 氧化鋅奈米結構性質........................................................................................1
1.1.1 零維結構.................................................................................................2
1.1.2一維結構..................................................................................................3
1.1.3 二維結構.................................................................................................3
1.1.4 三維結構.................................................................................................3
1.2 研究動機與方法................................................................................................4
第二章 製備技術與數值方法…….................................................................................6
2.1 氣-液-固法奈米結構成長機制.........................................................................6
2.2 文獻回顧..........................................................................................................10
2.2.1 生長法...................................................................................................10
2.2.2 各式一維奈米結構之I-V性質比較.....................................................14
2.3 數值方法..........................................................................................................15
2.3.1金屬顆粒粒徑分佈之計算....................................................................15
2.3.2 有限元素法...........................................................................................17
第三章 實驗流程與檢測儀器……...............................................................................19
3.1 實驗流程..........................................................................................................19
3.2 試片製備..........................................................................................................20
3.2.1 矽基板清洗...........................................................................................20
3.2.2 熱乾氧成長氧化矽層...........................................................................20
3.2.3 濺鍍金屬薄膜.......................................................................................20
3.2.4 RTA金屬點之生長................................................................................20
3.2.5 生長氧化鋅奈米結構...........................................................................20
3.3 檢測儀器..........................................................................................................21
3.3.1 掃描式電子顯微鏡...............................................................................21
3.3.2 穿透式電子顯微鏡...............................................................................23
3.3.3 X-ray繞射儀.......................................................................................23
3.3.4 場發射電性量測...................................................................................24
第四章 流場與溫度分佈模擬……...............................................................................27
4.1 模擬緣由..........................................................................................................27
4.2邊界條件...........................................................................................................27
4.3 統御方程式......................................................................................................27
4.4 模擬結果..........................................................................................................29
4.4.1氣體流量20sccm之流場及溫度分佈...................................................29
4.4.2 氣體流量50sccm之流場及溫度分佈..................................................31
4.4.3 氣體流量80sccm之流場及溫度分佈..................................................33
4.5 模擬實驗之結論..............................................................................................38
第五章 結果與討論.......................................................................................................40
5.1 影響奈米結構成長因素..................................................................................40
5.1.1 氣體流量...............................................................................................40
5.1.2 成長溫度...............................................................................................40
5.1.3 成長時間...............................................................................................41
5.2 氧化鋅奈米柱分析..........................................................................................47
5.2.1 TEM分析...............................................................................................47
5.2.2 XRD分析...............................................................................................48
5.2.3 場發射電性量測...................................................................................49
5.3 緩衝層的影響..................................................................................................54
5.4 不同金屬催化劑所成長之氧化鋅奈米柱探討..............................................55
5.4.1 催化劑-銅..............................................................................................55
5.4.2 場發射電性量測...................................................................................60
5.4.3 催化劑-鉑..............................................................................................62
5.5 兩階段成長奈米結構-製備金屬點及奈米線.................................................62
5.5.1 金屬點之製備與計算...........................................................................63
5.5.2 利用金屬點成長氧化鋅奈米結構.......................................................65
第六章 結論...................................................................................................................67
參考文獻…….................................................................................................................68
表1-1 氧化鋅基本特性表............................................................................................4
表2-1 氧化鋅奈米結構成長方式及相關性質比較表..............................................14
表2-2 場發射元件比較表..........................................................................................15
表4-1 方程式符號......................................................................................................28
表5-1 不同氣流量場發射性質表..............................................................................52
表5-2 不同成長溫度場發射性質表..........................................................................53
表5-3 不同成長時間場發射性質表..........................................................................54
表5-4 測量三個不同位置在起始電場之電流值......................................................54
表5-5 不同生長溫度、氣流量20sccm、成長時間10分鐘........................................61
表5-6 不同生長溫度、氣流量50sccm、成長時間10分鐘........................................61
表5-7 不同生長溫度、氣流量80sccm、成長時間10分鐘........................................62
圖1-1氧化鋅奈米柱之PL光譜......................................................................................2
圖1-2圓錐狀之場發射元件............................................................................................5
圖2-1氣-液-固法.............................................................................................................7
圖2-2 VLS法成長機制....................................................................................................7
圖2-3 Au-Ge相圖.............................................................................................................8
圖2-4 以VLS機制成長Ge奈米柱之圖片...................................................................8
圖2-5 Au-Zn相圖.............................................................................................................9
圖2-6 Cu-Zn相圖.............................................................................................................9
圖2-7 Pt-Zn相圖.............................................................................................................10
圖2-8 理想的ZnO晶體成長.........................................................................................11
圖2-9 模板法示意圖.....................................................................................................12
圖2-10 strel(‘disk’,R)指令之示意圖..............................................................................16
圖2-11 Matlab運算流程圖.............................................................................................16
圖3-1 實驗流程圖.........................................................................................................19
圖3-2 特性X光產生示意圖.........................................................................................22
圖3-3 X光與晶體產生布拉格繞射示意圖..................................................................24
圖3-4 場發射特性量測儀器.........................................................................................25
圖3-5 場發射示意圖.....................................................................................................26
圖4-1 模擬模型及網格分佈情況.................................................................................28
圖4-2 20sccm 在1.8cm高度流場分佈情形................................................................29
圖4-3 20sccm 在0.6cm高度流場分佈情形................................................................30
圖4-4 20sccm 在1.8cm高度溫度分佈情形................................................................30
圖4-5 20sccm 在0.6cm高度溫度分佈情形................................................................31
圖4-6 50sccm 在1.8cm高度流場分佈情形................................................................32
圖4-7 50sccm 在0.6cm高度流場分佈情形................................................................32
圖4-8 50sccm 在1.8cm高度溫度分佈情形................................................................33
圖4-9 50sccm 在0.6cm高度溫度分佈情形................................................................33
圖4-10 80sccm 在1.8cm高度流場分佈情形...............................................................34
圖4-11 80sccm 在0.6cm高度流場分佈情形...............................................................35
圖4-12 80sccm 在1.8cm高度溫度分佈情形...............................................................35
圖4-13 80sccm 在0.6cm高度溫度分佈情形...............................................................36
圖4-14 各種流速於高度1.8cm之流場比較................................................................37
圖4-15 各種流速於高度0.6cm之流場比較................................................................37
圖4-16 各種流速於高度1.8cm之溫度比較................................................................38
圖4-17 各種流速於高度0.6cm之溫度比較................................................................38
圖5-1 氣流量20sccm、成長溫度900℃、成長時間10分鐘.........................................41
圖5-2 氣流量50sccm、成長溫度900℃、成長時間10分鐘.........................................41
圖5-3 氣流量80sccm、成長溫度900℃、成長時間10分鐘.........................................42
圖5-4 氣流量20sccm、成長溫度925℃、成長時間10分鐘.........................................42
圖5-5 氣流量50sccm、成長溫度925℃、成長時間10分鐘.........................................42
圖5-6 氣流量80sccm、成長溫度925℃、成長時間10分鐘.........................................43
圖5-7 氣流量20sccm、成長溫度900℃、成長時間30分鐘.........................................43
圖5-8 氣流量20sccm、成長溫度925℃、成長時間30分鐘.........................................43
圖5-9 氣流量20sccm、成長溫度950℃、成長時間30分鐘.........................................44
圖5-10 氣流量50sccm、成長溫度900℃、成長時間30分鐘.......................................44
圖5-11 氣流量50sccm、成長溫度925℃、成長時間30分鐘.......................................44
圖5-12 氣流量50sccm、成長溫度950℃、成長時間30分鐘.......................................45
圖5-13 氣流量50sccm、成長溫度950℃、成長時間10分鐘.......................................45
圖5-14 氣流量50sccm、成長溫度950℃、成長時間90分鐘.......................................45
圖5-15 氣流量20sccm、成長溫度950℃、成長時間10分鐘.......................................46
圖5-16 氣流量20sccm、成長溫度950℃、成長時間30分鐘.......................................46
圖5-17氣流量20sccm、成長溫度950℃、成長時間90分鐘.........................................46
圖5-18 氧化鋅奈米柱之TEM照片及選區電子繞射圖。生長條件:氣流量20sccm、生長溫度950℃、成長時間為90分鐘............................................................................47
圖5-19 HRTEM晶格影像..............................................................................................47
圖5-20 EDS材料成份分析............................................................................................48
圖5-21氣流量20sccm、成長時間30分鐘,成長溫度900、925、950℃之XRD………48
圖5-22氣流量50sccm、成長溫度925℃,成長時間10、30、90分鐘之XRD................49
圖5-23 不同氣流量、成長溫度900℃、成長時間10分鐘之場發射............................51
圖5-24 不同氣流量、成長溫度950℃、成長時間30分鐘之場發射............................51
圖5-25 不同成長溫度、氣流量20sccm、成長時間30分鐘之場發射..........................52
圖5-26 不同成長溫度、氣流量50sccm、成長時間90分鐘之場發射..........................52
圖5-27 不同成長時間、氣流量50sccm、成長溫度925℃之場發射............................53
圖5-28 不同成長時間、氣流量20sccm、成長溫度950℃之場發射............................53
圖5-29 奈米碳管之場發射J-E圖.................................................................................54
圖5-30 未成長氧化矽層所成長之氧化鋅奈米結構,生長條件為氣流量20sccm、生長溫度950℃、成長時間90分鐘....................................................................................55
圖5-31 氣流量20sccm、成長時間10分鐘、成長溫度900℃.......................................56
圖5-32 氣流量20sccm、成長時間10分鐘、成長溫度925℃.......................................56
圖5-33 氣流量20sccm、成長時間10分鐘、成長溫度950℃.......................................56
圖5-34 氣流量50sccm、成長時間10分鐘、成長溫度900℃.......................................57
圖5-35 氣流量50sccm、成長時間10分鐘、成長溫度925℃.......................................57
圖5-36 氣流量50sccm、成長時間10分鐘、成長溫度950℃.......................................57
圖5-37 氣流量80sccm、成長時間10分鐘、成長溫度900℃.......................................58
圖5-38 氣流量80sccm、成長時間10分鐘、成長溫度925℃.......................................58
圖5-39 氣流量80sccm、成長時間10分鐘、成長溫度950℃.......................................58
圖5-40 催化劑-銅生成之氧化鋅奈米柱之XRD繞射圖形。生長條件:氣流量20sccm、生長溫度900℃、生長時間10分鐘.................................................................59
圖5-41 催化劑-銅之TEM照片,長約4μm,直徑約400nm。生長條件:氣流量20sccm、生長溫度900℃、生長時間10分鐘.................................................................59
圖5-42 不同生長溫度、氣流量20sccm、成長時間10分鐘..........................................60
圖5-43 不同生長溫度、氣流量50sccm、成長時間10分鐘..........................................61
圖5-44 不同生長溫度、氣流量80sccm、成長時間10分鐘..........................................61
圖5-45 鉑薄膜催化劑所生長之氧化鋅奈米柱。生長條件:氣流量20sccm、成長溫度950℃、成長時間90分鐘............................................................................................62
圖5-46 1000℃退火時間十分鐘....................................................................................63
圖5-47 900℃退火時間十分鐘......................................................................................64
圖5-48 800℃退火時間十分鐘......................................................................................64
圖5-49 1000℃退火時間五分鐘....................................................................................64
圖5-50 900℃退火時間五分鐘......................................................................................64
圖5-51 800℃退火時間五分鐘......................................................................................65
圖5-52 退火10分鐘粒徑與所佔整體百分比..............................................................65
圖5-53 退火5分鐘粒徑與所佔整體百分比................................................................65
圖5-54 氧化鋅奈米線,直徑約80nm、長約3μm。生長條件:氣流量20sccm、成長溫度920℃、成長時間30分鐘....................................................................................66
圖5-55 氧化鋅奈米線之XRD繞射圖形。生長條件:氣流量20sccm、成長溫度920℃、成長時間30分鐘................................................................................................66
[1]吳佳玲, ”一維氧化鋅奈米結構成長過程”,清華大學碩士論文,2004.
[2]邱文鼎, ”新穎氧化鋅奈米線生長技術”,成功大學碩士論文,2003.
[3]陳慶鍾, ”ZnO奈米線的合成及性質研究”,台灣大學碩士論文,2002.
[4]Michael H. Huang, “Room-Temperature Ultraviolet Nanowires Nanolasers”, Science, 292 (2001) 1897-1899.
[5]高濂, ”奈米光觸媒”,五南圖書出版公司,2004.
[6]Sumio Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56-58.
[7]Michael H. Huang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Advanced Materials, 13 (2001) 113-116.
[8]W. I. Park, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Applied Physics Letters, 80 (2002) 4232-4234.
[9]X.Q.Meng, “Growth temperature controlled shape variety of ZnO nanowires”, Chemical Physics Letters, 407 (2005) 91-94.
[10]Jinping Liu, “A low-temperature synthesis of ultraviolet-light-emitting ZnO nanotubes and tubular whiskers”, Journal of Solid State Chemistry, 179 (2006) 843-848.
[11]Y. W. Wang, “Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties”, Journal of Crystal Growth, 234 (2002) 171-175.
[12]Seung Chul Lyu, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chemical Physics Letters, 363 (2002) 134-138.
[13]G. H. Lee, “Fabrication of chestnut bur-like particles covered with ZnO”, Journal of Crystal Growth, 277 (2005) 1-5.
[14]Weizhong Xu, “ZnO nanostructure networks growth on silicon substrates”, Journal of Crystal Growth, 277 (2005) 490-495.
[15]F.Z. Wang, “Novel morphologies of ZnO nanotertrapods”, Material Letters, 59 (2005) 560-563.
[16]C. Pieralli, ”New optical probe using ZnO whiskers: analyses of sub-wavelength dithering and evanescent wave propagation” Applied Physics A, 66 (1998) S377-S380.
[17]Gengmim Zhang, “Field emission from nonaligned zinc oxide nanowires”, Vacuum, 77 (2004) 53-56.
[18]Wen-Ching Shih, “Growth of ZnO films on GaAs substrates with a SiO2 buffer layer by RF planar magnetron sputtering for surface acoustic wave applications”, Journal Crystal Growth, 137 (1994) 319-325.
[19]Jun Koike, “1.5GHz low-loss surface acoustic wave filter using ZnO/sapphire substrate”, J. Appl. Phys., 32 (1993) 2337-2340.
[20]H. Nanto, “Doping effect of SnO2 on gas sensing characteristics of sputtered ZnO-thin film chemical sensors”, Sensors and Actuators, B35-36 (1996) 384-387.
[21]Feng-Cang Lin, “Hydrogen-sensing mechanism of zinc oxide varistor gas sensors”, Sensors and Actuators, B24-25 (1995) 843-850.
[22]D. H. Zhang, “Adsorption and photodesorption of oxygen on the surface and crystallite interfaces of sputtered ZnO films”, Materials Chemistry Physics, 45 (1996) 248-252.
[23]K. S. Weissenrieder, “Conductivity model for sputtered ZnO-thin film gas sensors”, Thin Solid Films, 300 (1997) 30-41.
[24]O. Molosevic,” Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis”, Materials Science and Engineering, A168 (1993) 249-252.
[25]V. Sittinger, “ZnO:Al films deposition by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells”, Thin Solid Films, 496 (2006) 16-25.
[26]H. Rensmo, “High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes”, J. Phys. Chem. B, 101 (1997). 2598-2601.
[27]Eric W. Seelig, “Self-assembled 3D photonic crystals from ZnO colloidal spheres”, Materials Chemistry and Physics, 80 (2003) 257-263.
[28]S.E. Huq, “Field emission from amorphous diamond coated silicon tips”, Materials Science and Engineering, B47 (2000) 184-187.
[29]Gengmim Zhang, “Field emission from nonaligned zinc oxide nanowires”, Vacuum, 77 (2004) 53-56.
[30]Charles M. Lieber, “General Synthesis of Compound Semiconductor Nanowires”, Advanced Materials, 12 (2000) 298-302.
[31]http://web.met.kth.se/dct/pd/element/Au-Ge.jpg.
[32]J. L. Taraci, “Ion beam analysis of VLS grown Ge nanostructures on Si”, Nuclear Instruments and Methods in Physics Research, B 242 (2006) 205-208.
[33]鄭景升, “利用VLS機制在多孔矽上面成長氧化鋅奈米線之特性研究“,國立交通大學光電工程碩士,2002.
[34]http://www.uni-koeln.de/math-nat-fak/anorgchem/ruschewitz/vorlesungen/ACII/Cu-Zn-Phasendiagramm.jpg.
[35]http://www.crct.polymtl.ca/fact/documentation/FSnobl/Pt-Zn.jpg.
[36]Zuowan Zhou, “A new method for preparation of zinc oxide whiskers”, Materials Research Bulletin, 34 (1999) 1563-1567.
[37]Zuowan Zhou, “Tetropod-shaped ZnO whisker and its composites”, Journal of Materials Processing Technology, 89-90 (1999) 415-418.
[38]S. Deki, ”Novel wet process for preparation of vanadium oxide thin film”, Materials Research Bulletin, 31 (1996) 1399-1406.
[39]Wen-Jun Li, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203 (1999) 186-196.
[40]Woong Lee, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation”, Acta Materialia, 52 (2004) 3949-3957.
[41]Y. C. Wang, ” Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition”, Journal of Crystal Growth, 237-239 (2002) 564-568.
[42]Seu, Yi Li, “Copper-Catalyzed ZnO nanowires on silicon (100) grow by vapor-liquid-solid process”, Journal of Crystal Growth, 247 (2003) 357-362.
[43]澹台富國, ”新穎場發射材料之製程及特性研究”,交通大學碩士論文,2000.
[44]Adams, Rolf, ”Radial Decomposition of Discs and Spheres”, Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, 55 (1993) 325-332.
[45]Jones, Ronald, and Pierre Soille, ”Periodic lines: Definition, cascades, and application to granulometrie”, Pattern Recognition Letters, 17 (1996) 1057-1063
[46]Wang Jun, “Real time STM observation of Au-assisted decomposition of SiO2 films on Si(111) at elevated temperature”, Surface Science, 506 (2002) 66-79.
[47]陳力俊, ”材料電子顯微鏡學”, 國科會精密儀器發展中心,2003.
[48]Jae-hee Han, ”Effects of thickness of Ni layer deposition on glass substrate on the growth and emission properties of carbon nanotubes”, Material Science and Engineering, C16 (2001) 65-68.
[49]李思毅,”氧化鋅奈米結構之特性研究”,交通大學,2005.
[50]Hong Jin Fan, “Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals”, Applied Physics Letter, V85 (2004) 4142-4144.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top