(44.192.10.166) 您好!臺灣時間:2021/03/06 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳榮傑
研究生(外文):Rong-Jie Chen
論文名稱:不同亮暗間歇對大鼠日變節律性與基因表達的影響
論文名稱(外文):Effects of Light-Dark Durations on the Circadian Rhythmicity and Gene Expression in Rats
指導教授:謝坤叡
指導教授(外文):Kun-ruey Shieh
學位類別:碩士
校院名稱:慈濟大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:98
中文關鍵詞:日變節律視叉上核日變節律相關基因行為大鼠下視丘
外文關鍵詞:SCNcircadian rhythm related genescircadian rhythmsuprachiasmatic nucleusbehavioralbehaviorrathypothalamus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:428
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
日變節律(circadian rhythm),存在於地球上的各類生物中,即便是內生性時鐘(internal clock),其節律與週期也都與自然界息息相關。調控日變節律的基因,如Per1 (Period1)、Per2、Per3、Clock、Bmal1、Cry1 (Cryptochrome1)、Cry2、CK1ε (Casein kinase 1 ε)等,會隨外界正常的亮暗週期或內生性時鐘做約略二十四小時一次的規律性循環,亦或是單純參與日變節律的調控,我們稱之為日變節律相關基因(circadian rhythm related genes)。從了解哺乳類的生物時鐘位於視叉上核(suprachiasmatic nucleus, SCN),至日變節律相關基因的研究,學者們發現了日變節律影響的層面相當廣泛而深遠。因此,本論文的目的便是要去觀察在不同亮暗間歇的情況下,對於大鼠日變節律性與日變節律相關基因的影響。
現今研究哺乳類日變週期在行為上的表現多採用動物跑滾輪(wheel running)或是紅外光閘阻斷(infrared detector)的方式偵測,而本實驗是採用影像擷取的方式來記錄大鼠日變節律性。利用Sprague-Dawley大鼠,以具夜視功能的紅外光攝影機拍攝大鼠亮暗活動的情形,可同時記錄四~六隻各自獨立飼養的大鼠,並以移動的距離作為參數。在正常的12小時光亮-12小時光暗(12L-12D)的情形下,可以記錄分析出大鼠活動力具有日變節律性,而在全暗(constant dark)的環境下,也能觀測到動物的行為依內生性時鐘而自由運行(free running)的情形。此外,利用光線造成內生性時鐘向後延遲(phase delay)的實驗也能呈現,故可證明利用影像擷取的方式,能正確觀測動物活動性的日變週期。
本論文的另一主題是探討不同於一般實驗用的亮暗週期,如8L-8D,6L-6D,4L-4D,2L-2D,24L下,亮暗間歇對動物的影響。除動物行為的觀測,也在不同時間點犧牲動物,並取其下視丘(hypothalamus)與小腦(cerebellum),以觀測日變節律相關基因的表現。利用抽取組織RNA,反轉錄為cDNA並藉RT-PCR (reverse transcriptase-polymerase chain reaction)的方式放大基因表現。
結果發現在8L-8D下,動物活動力在光亮期皆較低落,主要活動力上升的時間點則延後至第一次主觀性黑夜(subjective night)的光暗後期及第二次主觀性黑夜的光暗初期;相較於正常週期,小腦的部份,rPeriod1、rPeriod3、rClock、rBmal1、rCry1、rCK1ε在連續三次8L-8D的亮暗週期中,第三次亮暗週期的基因表現皆低於前兩次,rPeriod1在第二次亮暗週期時會增加,rPeriod2在第二次主觀性白天(subjective day)的光暗初期會增加,而第二次主觀性黑夜的光亮期會抑制,rPeriod3在前兩次光暗期會增加,第三次光暗期會抑制,rBmal1在第一次光亮期與第三次亮暗週期時會抑制,第二次光暗初期會增加,rCry1在第二次光暗期會增加,第三次亮暗週期會抑制,rCry2在第一次光暗後期會上升,在第二次光暗期與第三次光亮期會受到抑制,rCK1ε在第一次光暗後期與第二次亮暗週期時會增加,在第三次亮暗週期時會抑制。在6L-6D的情形下,動物主要活動力時間由正常亮暗週期下十二小時的光暗期縮短至此時區主觀性黑夜的六小時光暗期;相較於正常週期,下視丘rPeriod2相位延遲(phase delay)約六小時,rPeriod3則呈現相位提前(phase advance)的情形,rClock在主觀性白天光暗期受到抑制,rBmal1、rCry1皆有趨於平緩的情形,rCry1、rCry2在主觀性黑夜的高峰會受到抑制,rPeriod1、rCK1ε則無明顯改變;小腦的部份,rPeriod1、rPeriod2、rCry1有相似的雙波峰,在兩次光暗的初期,表現都達高峰,rPeriod3的雙波峰則在第一次光暗初期與第二次光暗後期,rClock、rBmal1、rCry2、rCK1ε則在第一次光暗初期有高峰。在4L-4D的情形下,動物主觀性黑夜的光亮期,活動力明顯受到抑制,主觀性白天的光暗期,活動力有些許上升;與正常週期相比而言,下視丘rPeriod2高峰提早至主觀性白天的第一次光暗期,rClock原於主觀性黑夜第二次光暗後期上升的波峰點與光亮後的下降點,在此時區各受到抑制與增加的現象,rBmal1則呈現相位提前的情形,rCry1、rCK1ε皆有趨於平緩的趨勢,rCry2則無明顯改變;小腦的部份,rPeriod1有趨於平緩的情形,rPeriod2於主觀性白天的第一次光亮期與第二次光暗期表現上升,rClock則無明顯改變,rBmal1、rCry1、rCK1ε皆有相近的節律,高峰在主觀性黑夜的光亮期,低點在主觀性白天的第二次光亮期,rBmal1在主觀性白天的光暗期的高峰受到抑制,rCry1在主觀性黑夜的光亮期上升,rCK1ε在主觀性白天第二次光亮的高峰受到抑制。在2L-2D的情形下,動物主觀性黑夜的光亮期,活動力明顯受到抑制,主觀性白天的光暗期,活動力先升後降,並且伴隨相位延遲的現象。在全光亮(24L)下則會使動物有大於24小時的節律,且降低大鼠每日二十四小時之總移動距離。
綜合以上研究,發現在不同亮暗間歇8L-8D,6L-6D,4L-4D,2L-2D,24L的情形下,大鼠活動性仍具日變節律,且部份日變節律相關基因的表現也受到影響。
Abstract
Circadian rhythm is the common phenomenon existed in most of eukaryotes on earth. This about 24-hour (circadian) rhythmic activity is easy to be found in mammalian behaviors, such as locomotor activity in normal light-dark conditions. Moreover, some genes also express circadian rhythmicity and participate in regulation of circadian rhythm. These genes include the Per1 (Period1), Per2, Per3, Clock, Bmal1, Cry1 (Cryptochrome1), Cry2, CK1ε (Casein kinase 1 ε), et al. In this thesis, we tried to know whether what different light-dark conditions affect the circadian rhythmic pattern of locomotor activity circadian and circadian rhythm related genes expression.
Adult male Sprague-Dawley rats, weighing 350-600 g, were used in this study. Animal was individually kept in its own cage, and six rats as one group were measured at the same time. We found that locomotor activity in animals exhibited the circadian pattern using the distance of movement as the index in both 12-hour lights-on and -off (12L-12D) and constant darkness conditions. Furthermore, one hour light impulse at the early subjective night induced phase delay in active pattern. Furthermore, we detected different circadian rhythmicity in locomotor activity in different light-dark conditions including 8L-8D, 6L-6D, 4L-4D, 2L-2D, 24L. We also sacrificed animals at different time points in different light-dark conditions to measure the expression of Per1, Per2, Per3, Clock, Bmal1, Cry1, Cry2, and CK1ε genes. The brain regions of hypothalamus and cerebellum were used to extract RNA and semi-quantified the genes expression by the reverse transcriptase-polymerase chain reaction (RT-PCR).
In 8L-8D condition, the initial phase of locomotor activity was shifted from the initial period of darkness into the later period of darkness in the first subjective night and the initial period of darkness in the second subjective night with four hours phase delay compared with 12L-12D condition. Gene expression of cerebellum in 8L-8D compared to 12L-12D was described below. Expression patterns of rPer1, rPer3, rClock, rBmal1, rCry1, and rCK1ε were higher in the first and second light-dark cycles than the third one in 8L-8D conditions. The rPer2 mRNA expression increased at the initial period of darkness in the second subjective day, but reduced at the light period in the second subjective night in 8L-8D conditions. The rCry2 mRNA expression increased at the later period of first darkness, but reduced at the second darkness and the third light period in 8L-8D conditions. In 6L-6D conditions, the normal 12 hours duration of higher locomotor activity was attenuated to six hours and showed at the later period of darkness in the subjective night. In hypothalamus, rPer2 mRNA expression pattern showed phase delay, and rPer3 one did phase advance. The rClock, and rCry1 and rCry2 mRNAs expression in hypothalamus was inhibited at the dark period of the subjective day, and at the subjective night, respectively. The circadian pattern of rBmal1 and rCry1 mRNAs expressed less robustly, and rPer1 and rCK1ε ones were not influenced. On the other hand, in the cerebellum, the peak expression of rPer1, rPer2 and rCry1 mRNAs were at each initial period of darkness, but rPer3 one was at initial period of first darkness and later period of second one. The peak expression of rClock, rBmal1, rCry2 and rCK1ε mRNAs were at initial period of first darkness. In 4L-4D conditions, locomotor activity in rats were suppressed by light period (four hours) even in the subjective night, but slightly increased during the dark period (four hours) even in the subjective day. In 4L-4D conditions, the peak pattern of rPer2 mRNA in the hypothalamus shifted to the first dark period in the subjective day. The higher expression of rClock mRNA in the hypothalamus was reduced at the later period of second darkness in the subjective night, but increased at the light period in the subjective night. Circadian expression pattern of rBmal1 mRNA in the hypothalamus showed the phase advance, rCry1 and rCK1ε ones expressed less robustly, and rCry2 one was no change. In 4L-4D conditions, the genes expression in cerebellum was also detected. The rPer2 mRNA expression increased at the first light and second dark period in the subjective day. Circadian pattern of rPer1 mRNA expressed less robustly, and rClock one showed no influence. The peak pattern of rBmal1, rCry1 and rCK1ε were at the light period in the subjective night. However, the peak of rBmal1 reduced at the dark period in the subjective day, the rCry1 one increased at the light period of the subjective night, and the rCK1ε one reduced at the second light period in the subjective day. In 2L-2D conditions, locomotor activity at the light period in the subjective night was inhibited and increasing initially at the dark period in the subjective day combining with phase delay. In constant light conditions, the pattern of locomotor activity was longer than 24 hours with suppression of total distance of movement.
In conclusion, we find that 8L-8D, 6L-6D, 4L-4D, 2L-2D and 24L conditions exhibit different patterns of circadian rhythm in locomotor activity, and the expression patterns of circadian rhythm related genes on hypothalamus and cerebellum were also influenced in 8L-8D, 6L-6D and 4L-4D conditions.
目 錄

致謝………………………………………………………… I
英文摘要…………………………………………………… III
中文摘要……………………………………………………. V
序論…………………………………………………………. 01
一、生物時鐘(Biological Clocks)………………………………… 02
二、日變節律與視叉上核(Circadian Rhythm and SCN)………03
三、視叉上核的傳入與傳出(Efferent and Afferent of SCN)… 04
四、日變節律相關基因(Circadian Rhythm Related Genes)… 06
五、生理機制與日變節律(Physiology and Circadian Rhythm) 08
六、亮暗間歇的影響(Effects of Light-Dark Durations)………… 09
七、日變節律基因與疾病(Circadian Related Genes and Diseases) 10
實驗研究目的(The Objective of Experiment)……………………11

材料與方法………………………………………………… 12
一、材料方法…………………………………………………… 13
二、執行步驟………………………………………………… 18

結果…………………………………………………………. 21
一、建立以移動軌跡為大鼠動物行為觀察模式之方法………………22
(Developing a Tracking System to Inspect the Locomotor Activities)
二、正常亮暗間歇(12L-12D)下大鼠日變節律相關基因的表現狀況…24
(The Expression of Circadian Related Genes in 12L-12D Conditions)
三、不同亮暗間歇(8L-8D)對大鼠活動性的影響與基因表現的變化…25
(Locomotor Activity and Circadian Related Genes in 8L-8D Conditions)
四、大鼠活動性與日變節律基因的表現在亮暗間歇(6L-6D)的情形… 27
(Locomotor Activity and Circadian Related Genes in 6L-6D Conditions)
五、非正常亮暗間歇(4L-4D)對大鼠活動性的影響與基因表現的變化29
(Locomotor Activity and Circadian Related Genes in 4L-4D Conditions)
六、大鼠活動性的變化在快速亮暗轉換(2L-2D)時的情形…………… 31
(Locomotor Activity in 2L-2D Rapid Light-Dark Change)
七、大鼠活動性的變化在全光亮(24L)時的情形………………………31
(Locomotor Activity in Constant Light Environment)
討論………………………………………………………… 32
圖表及說明………………………………………………… 49
參考文獻…………………………………………………… 94
Abe H, Rusak B, Robertson HA (1991) Photic induction of Fos protein in the suprachiasmatic nucleus is inhibited by the NMDA receptor antagonist MK-801. Neurosci Lett 127:9-12.
Akiyama M, Kirihara T, Takahashi S, Minami Y, Yoshinobu Y, Moriya T, Shibata S (1999) Modulation of mPer1 gene expression by anxiolytic drugs in mouse cerebellum. Br J Pharmacol 128:1616-1622.
Antle MC, Foley DK, Foley NC, Silver R (2003) Gates and oscillators: a network model of the brain clock. J Biol Rhythms 18:339-350.
Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145-151.
Aronson BD, Bell-Pedersen D, Block GD, Bos NP, Dunlap JC, Eskin A, Garceau NY, Geusz ME, Johnson KA, Khalsa SB, et al. (1993) Circadian rhythms. Brain Res Brain Res Rev 18:315-333.
Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T, Akiyama M, Shibata S (2001) Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 66:1133-1139.
Aton SJ, Herzog ED (2005) Come together, right...now: synchronization of rhythms in a mammalian circadian clock. Neuron 48:531-534.
Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070-1073.
Boulos Z, Campbell SS, Lewy AJ, Terman M, Dijk DJ, Eastman CI (1995) Light treatment for sleep disorders: consensus report. VII. Jet lag. J Biol Rhythms 10:167-176.
Bryant DN, LeSauter J, Silver R, Romero MT (2000) Retinal innervation of calbindin-D28K cells in the hamster suprachiasmatic nucleus: ultrastructural characterization. J Biol Rhythms 15:103-111.
Carlson NR (2004) Physiology of Behavior, Eight Edition.
Cermakian N, Sassone-Corsi P (2000) Multilevel regulation of the circadian clock. Nat Rev Mol Cell Biol 1:59-67.
Chen CP, Kuhn P, Advis JP, Sarkar DK (2006) Prenatal ethanol exposure alters the expression of period genes governing the circadian function of beta-endorphin neurons in the hypothalamus. J Neurochem (in press).
Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23:10691-10702.
Citri Y, Colot HV, Jacquier AC, Yu Q, Hall JC, Baltimore D, Rosbash M (1987) A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature 326:42-47.
Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130:165-183.
Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271-290.
Eissenberg JC, Elgin SC (2006) Marking time. Nat Genet 38:276-277.
Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502-504.
Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350-361.
Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41-50.
Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093-7106.
Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL (2005) Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci USA 102:3111-3116.
Hamada T, LeSauter J, Venuti JM, Silver R (2001) Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci 21:7742-7750.
Harrington ME, Rusak B (1986) Lesions of the thalamic intergeniculate leaflet alter hamster circadian rhythms. J Biol Rhythms 1:309-325.
Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649-661.
Hendrickson AE, Wagoner N, Cowan WM (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch Mikrosk Anat 135:1-26.
Hirota T, Fukada Y (2004) Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci 21:359-368.
Ho AK, Mackova M, Price L, Chik CL (2003) Diurnal variation in p42/44 mitogen-activated protein kinase in the rat pineal gland. Mol Cell Endocrinol 208:23-30.
Honma S, Ikeda M, Abe H, Tanahashi Y, Namihira M, Honma K, Nomura M (1998) Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem Biophys Res Commun 250:83-87.
Horowitz TS, Cade BE, Wolfe JM, Czeisler CA (2001) Efficacy of bright light and sleep/darkness scheduling in alleviating circadian maladaptation to night work. Am J Physiol Endocrinol Metab 281:E384-391.
Ibuka N, Inouye SI, Kawamura H (1977) Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res 122:33-47.
Jackson FR, Bargiello TA, Yun SH, Young MW (1986) Product of per locus of Drosophila shares homology with proteoglycans. Nature 320:185-188.
Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17:675-689.
Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112-2116.
Kriegsfeld LJ, LeSauter J, Silver R (2004) Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J Neurosci 24:2449-2457.
Last KS, Olive PJ (2004) Interaction between photoperiod and an endogenous seasonal factor in influencing the diel locomotor activity of the benthic polychaete Nereis virens Sars. Biol Bull 206:103-112.
Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626-1638.
LeSauter J, Silver R (1999) Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity. J Neurosci 19:5574-5585.
Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21:4864-4874.
Maywood ES, O'Brien JA, Hastings MH (2003) Expression of mCLOCK and other circadian clock-relevant proteins in the mouse suprachiasmatic nuclei. J Neuroendocrinol 15:329-334.
Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671-707.
Mendoza J, Graff C, Dardente H, Pevet P, Challet E (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25:1514-1522.
Moga MM, Moore RY (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389:508-534.
Moore RY (1996) Entrainment pathways and the functional organization of the circadian system. Prog Brain Res 111:103-119.
Moore RY, Card JP (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344:403-430.
Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201-206.
Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89-98.
Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES (2005) Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease. J Neurosci 25:157-163.
Namihira M, Honma S, Abe H, Tanahashi Y, Ikeda M, Honma K (1999) Daily variation and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the pineal body and different areas of brain in rats. Neurosci Lett 267:69-72.
Ning K, Li L, Liao M, Liu B, Mielke JG, Chen Y, Duan Y, El-Hayek YH, Wan Q (2004) Circadian regulation of GABAA receptor function by CKI epsilon-CKI delta in the rat suprachiasmatic nuclei. Nat Neurosci 7:489-490.
Park K, Kang HM (2004) Cloning and circadian expression of rat Cry1. Mol Cells 18:256-260.
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600-605.
Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935-941.
Rusak B, Morin LP (1976) Testicular responses to photoperiod are blocked by lesions of the suprachiasmatic nuclei in golden hamsters. Biol Reprod 15:366-374.
Santy PA, Faulk DM, Davis JR (1994) Strategies for the preflight circadian shifting of Space Shuttle crews. J Clin Pharmacol 34:535-542.
Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J Natl Cancer Inst 93:1563-1568.
Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197:1089-1091.
Schwartz WJ, Reppert SM, Eagan SM, Moore-Ede MC (1983) In vivo metabolic activity of the suprachiasmatic nuclei: a comparative study. Brain Res 274:184-187.
Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013-1019.
Shieh KR (2003) Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK, in the rat brain. Neuroscience 118:831-843.
Shieh KR, Yang SC, Lu XY, Akil H, Watson SJ (2005) Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain. J Biomed Sci 12:209-217.
Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810-813.
Sladek M, Sumova A, Kovacikova Z, Bendova Z, Laurinova K, Illnerova H (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci USA 101:6231-6236.
Stephan FK, Nunez AA (1977) Elimination of circadian rhythms in drinking, activity, sleep, and temperature by isolation of the suprachiasmatic nuclei. Behav Biol 20:1-61.
Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583-1586.
Takano A, Shimizu K, Kani S, Buijs RM, Okada M, Nagai K (2000) Cloning and characterization of rat casein kinase 1epsilon. FEBS Lett 477:106-112.
Tischkau SA, Weber ET, Abbott SM, Mitchell JW, Gillette MU (2003) Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J Neurosci 23:7543-7550.
Udo R, Hamada T, Horikawa K, Iwahana E, Miyakawa K, Otsuka K, Shibata S (2004) The role of Clock in the plasticity of circadian entrainment. Biochem Biophys Res Commun 318:893-898.
Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697-706.
Yannielli P, Harrington ME (2004) Let there be "more" light: enhancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol 74:59-76.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳明昌(1994)。淺談電子書。出版界,38,13-17。
2. 王鳳奎(1993)。互動式電視教室─結合傳統教室教學與電視教學。教學科技與媒體,7,23-30。
3. 尹玫君、劉世雄(2005)。資訊科技融入教學的學習相關影響因素之研究。當代教育研究,13(2),109-138。
4. 王永洪(1999)。中國現代動畫電影美學特徵初探。兒童文學學刊,2,181- 215。
5. 黃逸民,〈法國女性主義的貢獻與盲點〉,《中外文學》,第二十一卷,第十九期,1996 年2月,頁4-21。
6. 朱文浩(2000)。媒體技術的發展對視覺傳達設計的影響之探討。商業設計學報,4,133-142。
7. 蔡振興,〈法國女性主義:伊莉佳萊論他者〉,《中外文學》,第二十一卷,第十九期,1996 年2月,頁47-65。
8. 劉瑞琪,〈女性主義藝術史研究方法論〉,《近代中國婦女史研究》,第八期,2000年6月,頁195-235。
9. 宋珮,〈攝影與繪畫的對話:安迪.沃荷的普普主義〉,《現代美術》,第56期,1994年,頁6-12。
10. 劉毓秀,〈走出「唯一」,流向「非一」:從佛洛依德到依蕊格萊〉,《中外文學》,第二十四卷,第十一期,1985 年,頁8-35。
11. 楊熾宏,〈一個以攝影來說話的女性藝術家:辛娣錫爾曼〉,《藝術家》,第125期,1985年10月,頁188-194。
12. 王雅各,〈身體:女性主義視覺藝術在再現上的終極矛盾〉,《婦女與兩性學刊》,第9期,1998 年,頁5-53。
13. 吳明隆(1998)。電腦焦慮、電腦態度之性別差異成因的探究與因應。教育部電子計算機中心簡訊,8705,36-45 。
14. 宋倩如(1993)。教學超媒體人機互動設計:認知科學觀念之探討。菁莪季刊,14(4),2-34。
15. 宋倩如(2000)。設計互動式超媒體人機介面之文獻探討。中學教育學報,7,201-217。
 
系統版面圖檔 系統版面圖檔