跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李珮君
研究生(外文):Pei-chun Li
論文名稱:FGF10/FGFR2訊息影響斑馬魚肝臟之發育
論文名稱(外文):FGF10/FGFR2 signaling affects liver development of zebrafish
指導教授:王文柄
指導教授(外文):Wen-pin Wang
學位類別:碩士
校院名稱:慈濟大學
系所名稱:人類遺傳研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:71
中文關鍵詞:LFABP斑馬魚肝臟發育纖維母細胞生長因子
外文關鍵詞:LFABPFibroblast growth factor (FGF)liver developmentzebrafish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
纖維母細胞生長因子(FGF)訊息傳遞路徑曾被報導過在哺乳類動物的肝臟形成中扮演很重要的角色。我們篩選斑馬魚不同發育時期肝臟中,纖維母細胞生長因子接受器(FGFR)的表現情形,發現FGFR2是肝臟主要表現的亞型。我們又進一步找到FGFR2b的配體之一,FGF10,在早期肝臟發育中有較高的表現。然而,FGF10/FGFR2訊息傳遞路徑在斑馬魚肝臟發育所扮演的角色,仍是未知的。我們注射反股寡核苷酸(morpholino)到LFABP-GFP轉殖魚的胚胎中,以降低FGF10的表現量。此LFABP-GFP轉殖魚是以肝臟型脂肪酸結合蛋白(LFABP)的驅動子控制綠色螢光蛋白質表達,所以會在魚的肝臟有綠色螢光。結果顯示注射過FGF10 MO或FGFR2 MO的胚胎(morphant),其肝臟都比正常的還小,尤其是同時注射FGF10 MO和FGFR2 MO的double morphant。接著利用全覆式原位雜交法來偵測,發現肝臟專一表達的LFABP基因,在FGFR2 morphant 或double morphant中,其表達量是降低的。另外FGF下游基因pea3的表現在各種morphant中也減少,尤其是FGF10 morphant。我們將會把FGF10突變的斑馬魚,Daedalus (Dae),和LFABP-GFP轉殖魚做交配,以產生Dae/LFABP轉殖魚。然後直接於魚體中觀察其肝臟綠色螢光蛋白質表達情形,以及做各種組織學上的分析。另一方面,我們使用肝臟專一表達的LFABP驅動子異位地大量表達FGF10於肝臟中。我們將FGF10選殖到LF2.8-MCS-V5/CMV-RFP的雙功能載體中,並且將其注射到胚胎中。注射過因而含有紅色螢光蛋白質表達的胚胎將用於分析外源性基因的測定。在未來,我們會創造出在肝臟中穩定表達FGF10的轉殖魚,以應用在各種研究上。
The importance of fibroblast growth factor (FGF) signals in liver organogenesis has been reported in mammals. We screened the expression of FGF receptors (FGFR) in three developmental stages of zebrafish liver and found the FGFR2b was the major subtype. We also found FGF10, one of the ligands of the FGFR2b, expressed at high level in early liver development. However, the roles of FGF10/FGFR2 in liver development of zebrafish are not clear. We knocked down the expression of FGF10 by injecting antisense morpholino (MO) into the embryos of liver type fatty acid binding protein (LFABP)-GFP transgenic fish. The results indicated that the liver of FGF10 and FGFR2 morphants were smaller than wild-type, especially in FGF10/FGFR2 double morphants. Using whole-mount in situ hybridization, the expression pattern of liver specific gene LFABP was reduced in FGFR2 morphant and double morphant. The expression of downstream target gene pea3 was decreased in the morphants, especially in FGF10 morphants. The daedalus (dae) zebrafish, in which the FGF10 gene was disrupted, will crossed with the LF2.8-GFP transgenic fish to generate the dae/LFABP fish. The fish will be analyzed by direct observation of GFP expression in the liver and subsequent histological analysis. On the other hand, we used the liver-specific L-FABP promoter to ectopically overexpress FGF10 in the liver. We cloned FGF10 into the LF2.8-MCS-V5/CMV-RFP bi-functional vector and injected to embryos. The injected embryos with RFP will be analyzed for the expression of exogenous genes. In the future, we will create the stable transgenic fish lines with FGF10 overexpression.
1. Introduction 1
1.1. The development of mammalian liver 1
1.2. The development of zebrafish liver 4
1.3. The Fibroblast growth factor (FGF) signals in mammalian liver
development 7
1.4. Using zebrafish as a model to study liver development 10
1.5. The specific aims of this research 13
2. Materials and Methods 14
2.1. Materials 14
2.2. Methods 21
3. Results 33
3.1. Expression of FGF-related genes in three developmental stages of
zebrafish liver 33
3.2. Loss of function for FGFR2/FGF10 signaling 35
3.3. Gain of function for FGF10 signaling 39
4. Discussion 40
5. References 46
Amali, A. A., Rekha, R. D., Lin, C. J., Wang, W. L., Gong, H. Y., Her, G. M., and Wu, J. L. (2006). Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis. J Biomed Sci 13, 225-232.

Arman, E., Haffner-Krausz, R., Gorivodsky, M., and Lonai, P. (1999). Fgfr2 is required for limb outgrowth and lung-branching morphogenesis. Proc Natl Acad Sci U S A 96, 11895-11899.

Bottcher, R. T., and Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26, 63-77.

Celli, G., LaRochelle, W. J., Mackem, S., Sharp, R., and Merlino, G. (1998). Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 17, 1642-1655.

Chang, B. E., Liao, M. H., Kuo, M. Y., and Chen, C. H. (2004). Developmental toxicity of arecoline, the major alkaloid in betel nuts, in zebrafish embryos. Birth Defects Res A Clin Mol Teratol 70, 28-36.

Dailey, L., Ambrosetti, D., Mansukhani, A., and Basilico, C. (2005). Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16, 233-247.

Denovan-Wright, E. M., Pierce, M., Sharma, M. K., and Wright, J. M. (2000). cDNA sequence and tissue-specific expression of a basic liver-type fatty acid binding protein in adult zebrafish (Danio rerio). Biochim Biophys Acta 1492, 227-232.

Detrich, H. W., 3rd, Westerfield, M., and Zon, L. I. (1999). Overview of the zebrafish system. Methods Cell Biol 59, 3-10.

Deutsch, G., Jung, J., Zheng, M., Lora, J., and Zaret, K. S. (2001). A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871-881.

El-Zahr, C. R., Zhang, Q., Hendricks, J. D., and Curtis, L. R. (2002). Temperature-modulated carcinogenicity of 7,12-dimethylbenz[a]anthracene in rainbow trout. J Toxicol Environ Health A 65, 787-802.

Fausto, N., and Campbell, J. S. (2003). The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 120, 117-130.

Field, H. A., Ober, E. A., Roeser, T., and Stainier, D. Y. (2003). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253, 279-290.

Gouysse, G., Couvelard, A., Frachon, S., Bouvier, R., Nejjari, M., Dauge, M. C., Feldmann, G., Henin, D., and Scoazec, J. Y. (2002). Relationship between vascular development and vascular differentiation during liver organogenesis in humans. J Hepatol 37, 730-740.

Grabher, C., and Look, A. T. (2006). Fishing for cancer models. Nat Biotechnol 24, 45-46.

Gualdi, R., Bossard, P., Zheng, M., Hamada, Y., Coleman, J. R., and Zaret, K. S. (1996). Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10, 1670-1682.

Her, G. M., Yeh, Y. H., and Wu, J. L. (2003). 435-bp liver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Dev Dyn 227, 347-356.

Her, G. M., Chiang, C. C., Chen, W. Y., and Wu, J. L. (2003). In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538, 125-133.

Her, G. M., Cheng, C. H., Hong, J. R., Sundaram, G. S., and Wu, J. L. (2006). Imbalance in liver homeostasis leading to hyperplasia by overexpressing either one of the Bcl-2-related genes, zfBLP1 and zfMcl-1a. Dev Dyn 235, 515-523.

Holtzinger, A., and Evans, T. (2005). Gata4 regulates the formation of multiple organs. Development 132, 4005-4014.

Itoh, N., and Ornitz, D. M. (2004). Evolution of the Fgf and Fgfr gene families. Trends Genet 20, 563-569.

Jung, J., Zheng, M., Goldfarb, M., and Zaret, K. S. (1999). Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998-2003.

Kamiya, A., Kojima, N., Kinoshita, T., Sakai, Y., and Miyaijma, A. (2002). Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 35, 1351-1359.

Kmiec, Z. (2001). Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161, III-XIII, 1-151.

Kudoh, T., Tsang, M., Hukriede, N. A., Chen, X., Dedekian, M., Clarke, C. J., Kiang, A., Schultz, S., Epstein, J. A., Toyama, R., and Dawid, I. B. (2001). A gene expression screen in zebrafish embryogenesis. Genome Res 11, 1979-1987.

Lam, S. H., Wu, Y. L., Vega, V. B., Miller, L. D., Spitsbergen, J., Tong, Y., Zhan, H., Govindarajan, K. R., Lee, S., Mathavan, S., et al. (2006). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24, 73-75.

Lee, C. S., Friedman, J. R., Fulmer, J. T., and Kaestner, K. H. (2005). The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944-947.

Liu, Y., Jiang, H., Crawford, H. C., and Hogan, B. L. (2003). Role for ETS domain transcription factors Pea3/Erm in mouse lung development. Dev Biol 261, 10-24.

Lorent, K., Yeo, S. Y., Oda, T., Chandrasekharappa, S., Chitnis, A., Matthews, R. P., and Pack, M. (2004). Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 131, 5753-5766.

Maroon, H., Walshe, J., Mahmood, R., Kiefer, P., Dickson, C., and Mason, I. (2002). Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 129, 2099-2108.

Matsuda, T., Fujio, Y., Nariai, T., Ito, T., Yamane, M., Takatani, T., Takahashi, K., and Azuma, J. (2006). N-cadherin signals through Rac1 determine the localization of connexin 43 in cardiac myocytes. J Mol Cell Cardiol 40, 495-502.
Matsumoto, K., Yoshitomi, H., Rossant, J., and Zaret, K. S. (2001). Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559-563.

Nasevicius, A., and Ekker, S. C. (2000). Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26, 216-220.

Ng, J. K., Kawakami, Y., Buscher, D., Raya, A., Itoh, T., Koth, C. M., Rodriguez Esteban, C., Rodriguez-Leon, J., Garrity, D. M., Fishman, M. C., and Izpisua Belmonte, J. C. (2002). The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 129, 5161-5170.

Ng, A. N., de Jong-Curtain, T. A., Mawdsley, D. J., White, S. J., Shin, J., Appel, B., Dong, P. D., Stainier, D. Y., and Heath, J. K. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286, 114-135.

Norton, W. H., Ledin, J., Grandel, H., and Neumann, C. J. (2005). HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development 132, 4963-4973.

Ober, E. A., Verkade, H., Field, H. A., and Stainier, D. Y. (2006). Mesodermal Wnt2b signalling positively regulates liver specification. Nature.

Ohuchi, H., Hori, Y., Yamasaki, M., Harada, H., Sekine, K., Kato, S., and Itoh, N. (2000). FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277, 643-649.

Paznekas, W. A., Boyadjiev, S. A., Shapiro, R. E., Daniels, O., Wollnik, B., Keegan, C. E., Innis, J. W., Dinulos, M. B., Christian, C., Hannibal, M. C., and Jabs, E. W. (2003). Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72, 408-418.

Raible, F., and Brand, M. (2001). Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signaling during early zebrafish development. Mech Dev 107, 105-117.

Santamaria, R., Esposito, G., Vitagliano, L., Race, V., Paglionico, I., Zancan, L., Zagari, A., and Salvatore, F. (2000). Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem J 350 Pt 3, 823-828.

Sekhon, S. S., Tan, X., Micsenyi, A., Bowen, W. C., and Monga, S. P. (2004). Fibroblast growth factor enriches the embryonic liver cultures for hepatic progenitors. Am J Pathol 164, 2229-2240.

Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., Yagishita, N., Matsui, D., Koga, Y., Itoh, N., and Kato, S. (1999). Fgf10 is essential for limb and lung formation. Nat Genet 21, 138-141.

Sharma, M. K., Denovan-Wright, E. M., Degrave, A., Thisse, C., Thisse, B., and Wright, J. M. (2004). Sequence, linkage mapping and early developmental expression of the intestinal-type fatty acid-binding protein gene (fabp2) from zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 138, 391-398.

Shiojiri, N., and Sugiyama, Y. (2004). Immunolocalization of extracellular matrix components and integrins during mouse liver development. Hepatology 40, 346-355.
Sosa-Pineda, B., Wigle, J. T., and Oliver, G. (2000). Hepatocyte migration during liver development requires Prox1. Nat Genet 25, 254-255.

Thisse, C., and Zon, L. I. (2002). Organogenesis--heart and blood formation from the zebrafish point of view. Science 295, 457-462.

Tonou-Fujimori, N., Takahashi, M., Onodera, H., Kikuta, H., Koshida, S., Takeda, H., and Yamasu, K. (2002). Expression of the FGF receptor 2 gene (fgfr2) during embryogenesis in the zebrafish Danio rerio. Mech Dev 119 Suppl 1, S173-178.

Wanless, I. R. (2002). Anatomy, Histology, Embryology and Development Anomalies of the liver. In Sleisenger & Fordtran’s Gastrointestinal and Liver Disease (ed. M. Feldman, W. O. Tschumy, Jr, L. S. Friedman and M. H. Sleisenger), pp. 1195-1201. Philadelphia, PA: W. B. Saunders.

Wen, H. J., Wang, Y., Chen, S. H., and Hu, C. H. (2002). Expression pattern of the single-minded gene in zebrafish embryos. Mech Dev 110, 231-235.

Yang, S. K., and Dower, W. V. (1975). Metabolic pathways of 7,12-dimethylbenz[a]anthracene in hepatic microsomes. Proc Natl Acad Sci U S A 72, 2601-2605.

Yew, P. R. (2001). Ubiquitin-mediated proteolysis of vertebrate G1- and S-phase regulators. J Cell Physiol 187, 1-10.

Zaret, K. S. (2000). Liver specification and early morphogenesis. Mech Dev 92, 83-88.

Zhao, R., and Duncan, S. A. (2005). Embryonic development of the liver. Hepatology 41, 956-967.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top