(18.210.12.229) 您好!臺灣時間:2021/03/01 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許育華
研究生(外文):Yu-Hua Hsu
論文名稱:肝癌細胞株中調控HNF4α基因的表現
論文名稱(外文):Regulation of hepatocyte nuclear factor 4 alpha (HNF4α) expression in hepatocellular carcinoma cell lines
指導教授:陳紀雄
指導教授(外文):Ji-Hshiung Chen
學位類別:碩士
校院名稱:慈濟大學
系所名稱:人類遺傳研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:45
中文關鍵詞:癌症轉移相關基因肝癌細胞
外文關鍵詞:hepatocarcinoma cellsHNF4 alphaHuh 7 cellsSK-Hep-1 cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
先前研究證明,在老鼠肝臟形成過程中,E-cadeherin的表現必需要有HNF4α。因此,當HNF4α表現下降時將會使得肝臟細胞喪失極性並且增加細胞的移動性與侵犯性。然而,HNF4α在人類肝癌細胞的機轉尚未被釐清。日本研究團隊發現一個新的組蛋白甲基轉移酶 (histone methyltransferase), SMYD3會高度表現於人類大腸直腸癌細胞株與肝癌細胞株,並且發現SMYD3會負調控HNF4α的表現,但尚未以實驗證明此關係。我們假設,或許降低HNF4α的表現會藉由降低E-cadeherin的表現,進而增加肝癌細胞的轉移能力。我們的研究主要是鑑定出在人類肝癌細胞中調控HNF4α的重要轉錄因子。在此,我們試驗將HNF4α調控區域中SMYD3的結合序列刪除後是否會增加HNF4α基因的表現,進而降低肝癌細胞的轉移能力。 但是,實驗結果顯示刪除HNF4α調控區域中SMYD3的結合序列不會增加HNF4α基因的表現,或許SMYD3並不是一個重要的轉錄因子。接著,我們更細微的依序刪除HNF4α調控區域。因此可以找出兩個SP1 結合序列,分別位於:(-243與-192),一個HNF3α(-258)結合序列和一個Cdx2A結合序列(-226到-192)。實驗結果指出,在HNF4α調控區域 (-192)位置的SP1結合序列有可能是無效的,其真正有效位置是位於-243;同時在HNF4α調控區域(-269到-226)位置的HNF3α與SP1不具有協同調控作用。同時CdX2A似乎真的會抑制HNF4α的表現,或許CdX2A對於HNF4α調控E-cadeherin 的表現會是造成肝癌細胞轉移程度不一的原因之ㄧ。
It has been reported that in mouse hepatogenesis HNF4α is essential for the expression of E-cadherin in the organ formation. Thus if HNF4α is down-regulated the consequence would be the lost of polarity and increase in cell mobility and invasiveness of hepatocyte. Whether HNF4α can regulate metastasis of human hepatoma cell has not been determined yet. It has been reported that in most hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) SMYD3, a histone methyaltranferase, was over expressed. SMYD3 can down-regulate HNF4α. The decreased HNF4αexpression may alter carcinogenesis of HCC through decrease expression of E-cadherin, thus increasing metastatic potential of HCC.
The aim of this study is to characterize several transcription factors (TFs) that are important in regulating HNF4α expression in the HCC. Here, we examined whether deletions of SMYD3 binding motif in the promoter region of HNF4αcould increase the metastasis potential of human hepatoma cell lines. The results of functional assay of SMYD3 on HNF4α regulatory sequence could not confirm the previous study. Therefore SMYD3 appeared not to be a critical factor for HNF4α expression in our study. More detailed serial deletions of HNF4αpromoter allowed us to identify three putative positive regulatory elements and one putative negative regulatory element. We want to identify which transcription factor acts as a positive modulator for the HNF4αexpression.
There are two putative SP1 binding motifs in the HNF4α promoter region at (-243/154) and (-192/154), respectively. The results of functional assays indicated that SP1 binding motif in the (-192/154) promoter region may not be functional. The functional SP1 binding motif is located in the position of -243. Our results also showed that Cdx2A is a negative regulator for HNF4α, thus it may be a potential suppressor for E-cadherin expression, it may also contribute to HCC metastasis.
ENGLISH ABSTRCT ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙I
中文摘要˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅱ
CONTENT ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅲ
INTRODUCTION ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙1
MATERIALS & METHODS˙˙˙˙˙˙˙˙˙˙˙˙˙˙6
RESULTS ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙17
DISCUSSION˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙33
REFERENCES˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙37
APPENDIX˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙39
Argyrokastritis A, Kamakari S, Kapsetaki M et al. Human hepatocyte nuclear factor-4 (hHNF-4) gene maps to 20q12-q13.1 between PLCG1 and D20S17. Hum Genet 1997; 99 (2):233-6.
Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel) 1996; 156 (3):217-26.
Cirillo LA, Lin FR, Cuesta I et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002; 9 (2):279-89.
Friedl P, Hegerfeldt Y, Tusch M. Collective cell migration in morphogenesis and cancer. Int J Dev Biol 2004; 48 (5-6):441-9.
Guo RJ, Suh ER, Lynch JP. The role of Cdx proteins in intestinal development and cancer. Cancer Biol Ther 2004; 3 (7):593-601.
Hamamoto R, Furukawa Y, Morita M et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 2004; 6 (8):731-40.
Hamamoto R, Silva FP, Tsuge M et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 2006; 97 (2):113-8.
Hsu ML, Chen SW, Lin KH et al. Cytokine regulation of HIV-1 LTR transactivation in human hepatocellular carcinoma cell lines. Cancer Lett 1995; 94 (1):41-8.
Ko S, Chu KM, Luk JM et al. CDX2 co-localizes with liver-intestine cadherin in intestinal metaplasia and adenocarcinoma of the stomach. J Pathol 2005; 205 (5):615-22.
Lee CS, Friedman JR, Fulmer JT et al. The initiation of liver development is dependent on Foxa transcription factors. Nature 2005; 435 (7044):944-7.
Li J, Ning G, Duncan SA. Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 2000; 14 (4):464-74.
Liotta LA, Stetler-Stevenson WG, Steeg PS. Cancer invasion and metastasis: positive and negative regulatory elements. Cancer Invest 1991; 9 (5):543-51.
Medlock ES, Haar JL. The liver hemopoietic environment: I. Developing hepatocytes and their role in fetal hemopoiesis. Anat Rec 1983; 207 (1):31-41.
Parviz F, Matullo C, Garrison WD et al. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 2003; 34 (3):292-6.
Ruiz P, Gunthert U. The cellular basis of metastasis. World J Urol 1996; 14 (3):141-50.
Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003; 120 (11):1351-83.
Spath GF, Weiss MC. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol 1998; 140 (4):935-46.
Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 2005; 65 (14):5991-5; discussion 5.
Tsuge M, Hamamoto R, Silva FP et al. A variable number of tandem repeats polymorphism in an E2F-1 binding element in the 5' flanking region of SMYD3 is a risk factor for human cancers. Nat Genet 2005; 37 (10):1104-7.
Wada H, Kagoshima M, Ito K et al. 5-Azacytidine suppresses RNA polymerase II recruitment to the SLPI gene. Biochem Biophys Res Commun 2005; 331 (1):93-9.
Wang H, Cao R, Xia L et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 2001; 8 (6):1207-17.
Wittekind C, Neid M. Cancer invasion and metastasis. Oncology 2005; 69 Suppl 1:14-6.
Xu JY, Chen LB, Xu JY et al. [Inhibition of SMYD3 Gene Expression by RNA Interference Induces Apoptosis in Human Hepatocellular Carcinoma Cell Line HepG2.]. Ai Zheng 2006; 25 (5):526-32.
Xu W, Cho H, Evans RM. Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol 2003; 364:205-23.
Yamagata K, Furuta H, Oda N et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996; 384 (6608):458-60.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔