跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡禎瑩
研究生(外文):Chien Chen-Ying
論文名稱:血纖維蛋白溶酶原片段K4418造成內皮細胞凋亡扮演的角色
論文名稱(外文):The role of plasminogen fragment K4418 in apoptosis of endothelial cells
指導教授:林銘德林銘德引用關係
指導教授(外文):Ming-T. Lin
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:86
中文關鍵詞:血纖維蛋白溶酶原細胞凋亡
外文關鍵詞:plasminogenapoptosisFAKcaspasecalpain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
血管新生作用(angiogenesis),由舊有血管長出新血管的過程,是胚胎發育、傷口修復
及成人女性生理週期所需的生理過程。腫瘤生長或轉移依賴血管新生,因此抑制血管新
生可用於癌症治療。血纖維蛋白溶酶原(plasminogen)前四個kringle domain 的血管靜止
蛋白(angiostatin)能有效抑制血管新生。我們之前結果顯示不同的血纖維蛋白溶酶原片段
具有不同抑制血管新生的成效,而K4418 在抑制腫瘤生長成效上較K1-4 (angiostatin)為
佳。本實驗旨在找出K4418 引起細胞凋亡的機制並釐清參與作用的分子。重組蛋白K4418
以Pichia pastoris 系統表現再以DEAE 及Lysine Sepharose 純化。純化之K4418 會造成內
皮細胞凋亡呈一劑量效應。K4418 造成bFGF 引發之蛋白酪胺酸磷酸化的下降,尤以36
kDa~47 kDa 分子最為明顯。此現象會因給予酪胺酸去磷酸酶抑制物Na3VO4 而恢復。預
先處理Na3VO4 可抑制K4418 引起之細胞凋亡。偵測K4418 作用後酪胺酸去磷酸酶總活
性,結果顯示酪胺酸去磷酸酶活性在30 分鐘時下降,60 分鐘時有最高活性。之前結果
推測牛肺動脈內皮細胞integrin αvβ3 可能為K4418 的受體。FACScan 結果顯示人類臍靜
脈內皮細胞有integrin α1、α2、α3、αvβ3 和β1 的表達。酪胺酸去磷酸酶SHP-1,bFGF 引
起之增生訊息中的負調控者,會與integrin α3、β1、αv 和β3 結合。給予K4418 促使SHP-1
與β1、β3 integrins 間之結合增加。與β integrins 結合的focal adhesion kinase (FAK)對於細
胞貼附與生存是重要的。血管靜止蛋白會引起FAK 的持續活化及內皮細胞的凋亡。雖
然K4418 快速地引起FAK 的活化,然而在作用一小時後即造成FAK 的去磷酸化與降解。
K4418 作用兩小時會引發caspase 1、caspase 8 及calapin 的活化。而caspase 抑制物
(z-VAD-FMK 、z-DQMD-FMK) 、calpain 抑制物(ALLN) 及SHP-1 抑制物(sodium
stibogluconate)可抑制K4418 引起的FAK 去磷酸化與降解。根據這些結果,本研究推測
K4418 經由integrins 與內皮細胞接觸,引發細胞內酪胺酸去磷酸酶活性上升。SHP-1 或
是其他酪胺酸去磷酸酶在FAK 的失活上可能扮演重要角色。去磷酸化的FAK 進而被
K4418 活化之caspases 與calpain 降解,最終內皮細胞走向凋亡。
Angiogenesis, the process by which new blood vessels sprout from existing vessels to
vascularize tissues, is a necessary physiological process for embryonic development, wound
healing, and reproductive cycle in adult females. Tumor growth or metastasis is angiogenesis
dependent; therefore, antiangiogenesis can be applied for cancer therapy. Angiostatin, the first
four kringles domain of plasminogen, inhibits angiogenesis effectively. Our previous study
showed that various plasminogen fragments had different inhibitory effects on angiogenesis.
Especially, K4418 had better inhibitory effect on tumor growth than K1-4 (angiostatin). This
study was established to find out the apoptotic mechanism induced by K4418, and clarified the
molecules involved in the processes. Recombinant K4418 was expressed in Pichia pastoris
expression system and purified by anion exchange (DEAE) and Lysine Sepharose. Purified
K4418 could induce endothelial cell apoptosis in a dose-dependent manner. The bFGF-induced
total tyrosine phosphorylation was decreased by K4418, especially molecules between 36
kDa~47 kDa. The effect was rescued by the tyrosine phosphatase inhibitor Na3VO4.
Pretreatment with Na3VO4 could inhibit K4418-induced apoptosis. Detection of the total
tyrosine phosphatase activity after K4418 treatment showed that phospho-tyrosine phosphatase
activity was decreased at 30 min and had highest activity at 60 min. Previous data suggested
that integrin αvβ3 may be a receptor of K4418 in calf pulmonary artery endothelial cells
(CPAE). FACScan results showed that human umbilical vein endothelial cells (HUVEC)
expressed α1, α2, α3, αvβ3 and β1 integrins. Tyrosine phosphatase SHP-1, a negative regulator
of bFGF-induced proliferation signal, was associated with integrin α3, β1, αv and β3. After
K4418 treatment, SHP-1 associated with β1 and β3 integrins was increased. β integrins
associated focal adhesion kinase (FAK) is important in cell adhesion and survival. Angiostatin
induced FAK constitutive activation and endothelial cell apoptosis. Although K4418 rapidly
3
induced FAK activation, FAK was then dephosphorylated and degradated after 1 hr treatment.
Treatment with K4418 for 2 hr caused caspase 1, caspase 8 and calpain activation. Caspase
inhibitors (z-VAD-FMK and z-DQMD-FMK), calpain inhibitor (ALLN) and SHP-1 inhibitor
(sodium stibogluconate) could inhibit K4418-induced FAK dephosphorylation and degradation.
According to these results, this study suggested that K4418 interacted with endothelial cells
through integrins and increased total tyrosine phosphatase activity. SHP-1 or other tyrosine
phosphatase may play an important role in FAK inactivation. Dephosphorylated FAK was
further degraded by the caspases and calpain which were activated by K4418. Finally
endothelial cells underwent apoptosis.
中文摘要 1
英文摘要 2
誌謝 4
目錄 5
圖目錄 7
附錄目錄 8
緒論
1、血管新生作用與其調控 9
2、血管新生與腫瘤間的關係 11
3、血管靜止蛋白及其相近蛋白 12
4、血管靜止蛋白的作用機制 14
5、血管靜止蛋白與細胞凋亡 17
6、實驗目的 19
材料與方法
1、K4418 蛋白表現:
1-1、轉殖株小量蛋白質表現 20
1-2、蛋白質電泳 (protein electrophoresis) 21
1-3、西方點墨法 (Western blot) 23
1-4、轉殖株大量蛋白質的表現 25
1-5、重組蛋白質的純化 26
1-6、重組蛋白質的濃縮 27
1-7、蛋白質定量 27
6
2、內皮細胞繼代培養:
2-1、細胞培養 28
2-2、保存細胞 29
2-3、解凍細胞 30
2-4、細胞計數 30
3、重組蛋白K4418之活性分析:
3-1、細胞凋亡分析 31
3-2、細胞表面integrin表現分析 32
3-3、免疫沉澱法 32
3-4、Casein zymography 34
3-5、Cell adhesion assay 35
3-6、酪胺酸去磷酸酶活性分析(Tyrosine phosphatase activity assay) 36
4、統計及密度分析:
4-1、統計分析法 38
4-2、密度分析法 38
實驗結果與討論 39
參考文獻 55
圖 62
附錄 81
自述 86
Ausprunk, D. H., and J. Folkman. 1977. Migration and proliferation of endothelial
cells in preformed and newly formed blood vessels during tumor angiogenesis.
Microvasc Res 14:53-65.
2. Benjamin, L. E., I. Hemo, and E. Keshet. 1998. A plasticity window for blood
vessel remodelling is defined by pericyte coverage of the preformed endothelial
network and is regulated by PDGF-B and VEGF. Development 125:1591-8.
3. Black, R. A., S. R. Kronheim, and P. R. Sleath. 1989. Activation of interleukin-1
beta by a co-induced protease. FEBS Lett 247:386-90.
4. Blomgren, K., C. Zhu, X. Wang, J. O. Karlsson, A. L. Leverin, B. A. Bahr, C.
Mallard, and H. Hagberg. 2001. Synergistic activation of caspase-3 by m-calpain
after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"? J Biol
Chem 276:10191-8.
5. Cai, J., J. Yang, and D. P. Jones. 1998. Mitochondrial control of apoptosis: the role
of cytochrome c. Biochim Biophys Acta 1366:139-49.
6. Cao, Y., R. Cao, and N. Veitonmaki. 2002. Kringle structures and antiangiogenesis.
Curr Med Chem Anticancer Agents 2:667-81.
7. Cao, Y., R. W. Ji, D. Davidson, J. Schaller, D. Marti, S. Sohndel, S. G. McCance,
M. S. O'Reilly, M. Llinas, and J. Folkman. 1996. Kringle domains of human
angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J
Biol Chem 271:29461-7.
8. Chen, H. C., and J. L. Guan. 1994. Association of focal adhesion kinase with its
potential substrate phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A
91:10148-52.
9. Claesson-Welsh, L., M. Welsh, N. Ito, B. Anand-Apte, S. Soker, B. Zetter, M.
O'Reilly, and J. Folkman. 1998. Angiostatin induces endothelial cell apoptosis and
activation of focal adhesion kinase independently of the integrin-binding motif RGD.
Proc Natl Acad Sci U S A 95:5579-83.
10. Cooray, P., Y. Yuan, S. M. Schoenwaelder, C. A. Mitchell, H. H. Salem, and S. P.
Jackson. 1996. Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain.
56
Biochem J 318 ( Pt 1):41-7.
11. Cryns, V., and J. Yuan. 1998. Proteases to die for. Genes Dev 12:1551-70.
12. Eriksson, K., P. Magnusson, J. Dixelius, L. Claesson-Welsh, and M. J. Cross. 2003.
Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and
VEGF without interfering with specific intracellular signal transduction pathways.
FEBS Lett 536:19-24.
13. Fan, T. J., L. H. Han, R. S. Cong, and J. Liang. 2005. Caspase family proteases and
apoptosis. Acta Biochim Biophys Sin (Shanghai) 37:719-27.
14. Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease.
Nat Med 1:27-31.
15. Folkman, J. 1971. Tumor angiogenesis: therapeutic implications. N Engl J Med
285:1182-6.
16. Folkman, J. 1990. What is the evidence that tumors are angiogenesis dependent? J
Natl Cancer Inst 82:4-6.
17. Folkman, J. 1984. What is the role of endothelial cells in angiogenesis? Lab Invest
51:601-4.
18. Folkman, J., and P. A. D'Amore. 1996. Blood vessel formation: what is its molecular
basis? Cell 87:1153-5.
19. Folkman, J., and C. Haudenschild. 1980. Angiogenesis in vitro. Nature 288:551-6.
20. Folkman, J., and Y. Shing. 1992. Angiogenesis. J Biol Chem 267:10931-4.
21. Frisch, S. M., K. Vuori, E. Ruoslahti, and P. Y. Chan-Hui. 1996. Control of
adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134:793-9.
22. Gimbrone, M. A., Jr., and R. S. Cotran. 1975. Human vascular smooth muscle in
culture. Growth and ultrastructure. Lab Invest 33:16-27.
23. Giri, D., and M. Ittmann. 1999. Inactivation of the PTEN tumor suppressor gene is
associated with increased angiogenesis in clinically localized prostate carcinoma. Hum
Pathol 30:419-24.
24. Gross, J. L., D. Moscatelli, and D. B. Rifkin. 1983. Increased capillary endothelial
cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci U
S A 80:2623-7.
57
25. Gupta, N., E. Nodzenski, N. N. Khodarev, J. Yu, L. Khorasani, M. A. Beckett, D.
W. Kufe, and R. R. Weichselbaum. 2001. Angiostatin effects on endothelial cells
mediated by ceramide and RhoA. EMBO Rep 2:536-40.
26. Hanahan, D., and J. Folkman. 1996. Patterns and emerging mechanisms of the
angiogenic switch during tumorigenesis. Cell 86:353-64.
27. Hanford, H. A., C. A. Wong, H. Kassan, D. L. Cundiff, N. Chandel, S. Underwood,
C. A. Mitchell, and G. A. Soff. 2003. Angiostatin(4.5)-mediated apoptosis of vascular
endothelial cells. Cancer Res 63:4275-80.
28. Harrington, E. O., A. Smeglin, J. Newton, G. Ballard, and S. Rounds. 2001.
Protein tyrosine phosphatase-dependent proteolysis of focal adhesion complexes in
endothelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 280:L342-53.
29. Harrington, E. O., A. Smeglin, N. Parks, J. Newton, and S. Rounds. 2000.
Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a
possible role of p38α. Am J Physiol Lung Cell Mol Physiol 279:L733-42.
30. Holash, J., P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D.
Zagzag, G. D. Yancopoulos, and S. J. Wiegand. 1999. Vessel cooption, regression,
and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994-8.
31. Hsia, D. A., S. T. Lim, J. A. Bernard-Trifilo, S. K. Mitra, S. Tanaka, J. den Hertog,
D. N. Streblow, D. Ilic, M. H. Ginsberg, and D. D. Schlaepfer. 2005. Integrin α4β1
promotes focal adhesion kinase-independent cell motility via alpha4 cytoplasmic
domain-specific activation of c-Src. Mol Cell Biol 25:9700-12.
32. Imamura, H., K. Takaishi, K. Nakano, A. Kodama, H. Oishi, H. Shiozaki, M.
Monden, T. Sasaki, and Y. Takai. 1998. Rho and Rab small G proteins coordinately
reorganize stress fibers and focal adhesions in MDCK cells. Mol Biol Cell 9:2561-75.
33. Jiang, L., V. Jha, M. Dhanabal, V. P. Sukhatme, and S. L. Alper. 2001. Intracellular
Ca2+ signaling in endothelial cells by the angiogenesis inhibitors endostatin and
angiostatin. Am J Physiol Cell Physiol 280:C1140-50.
34. Kang, C. B., L. Feng, J. Chia, and H. S. Yoon. 2005. Molecular characterization of
FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic
protein Bcl-2. Biochem Biophys Res Commun 337:30-8.
35. Kanner, S. B., A. B. Reynolds, R. R. Vines, and J. T. Parsons. 1990. Monoclonal
antibodies to individual tyrosine-phosphorylated protein substrates of
oncogene-encoded tyrosine kinases. Proc Natl Acad Sci U S A 87:3328-32.
58
36. King, A. R., S. E. Francis, C. J. Bridgeman, H. Bird, M. K. Whyte, and D. C.
Crossman. 2003. A role for caspase-1 in serum withdrawal-induced apoptosis of
endothelial cells. Lab Invest 83:1497-508.
37. Lam, E., M. Martin, and G. Wiederrecht. 1995. Isolation of a cDNA encoding a
novel human FK506-binding protein homolog containing leucine zipper and
tetratricopeptide repeat motifs. Gene 160:297-302.
38. Llinas, M., A. De Marco, S. M. Hochschwender, and R. A. Laursen. 1983. A
1H-NMR study of isolated domains from human plasminogen. Structural homology
between kringles 1 and 4. Eur J Biochem 135:379-91.
39. Lockshin, R. A., and Z. Zakeri. 2001. Programmed cell death and apoptosis: origins
of the theory. Nat Rev Mol Cell Biol 2:545-50.
40. Lopez-Ocejo, O., A. Viloria-Petit, M. Bequet-Romero, D. Mukhopadhyay, J. Rak,
and R. S. Kerbel. 2000. Oncogenes and tumor angiogenesis: the HPV-16 E6
oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in
a p53 independent manner. Oncogene 19:4611-20.
41. Malinda, K. M., L. Ponce, H. K. Kleinman, L. M. Shackelton, and A. J. Millis.
1999. Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates
directional migration of human umbilical vein endothelial cells. Exp Cell Res
250:168-73.
42. Mandic, A., J. Hansson, S. Linder, and M. C. Shoshan. 2003. Cisplatin induces
endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol
Chem 278:9100-6.
43. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular
platform triggering activation of inflammatory caspases and processing of proIL-beta.
Mol Cell 10:417-26.
44. Maxwell, P. H., G. U. Dachs, J. M. Gleadle, L. G. Nicholls, A. L. Harris, I. J.
Stratford, O. Hankinson, C. W. Pugh, and P. J. Ratcliffe. 1997. Hypoxia-inducible
factor-1 modulates gene expression in solid tumors and influences both angiogenesis
and tumor growth. Proc Natl Acad Sci U S A 94:8104-9.
45. Mitra, S. K., D. A. Hanson, and D. D. Schlaepfer. 2005. Focal adhesion kinase: in
command and control of cell motility. Nat Rev Mol Cell Biol 6:56-68.
46. Moser, T. L., D. J. Kenan, T. A. Ashley, J. A. Roy, M. D. Goodman, U. K. Misra, D.
J. Cheek, and S. V. Pizzo. 2001. Endothelial cell surface F1-F0 ATP synthase is
59
active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A
98:6656-61.
47. Moser, T. L., M. S. Stack, I. Asplin, J. J. Enghild, P. Hojrup, L. Everitt, S.
Hubchak, H. W. Schnaper, and S. V. Pizzo. 1999. Angiostatin binds ATP synthase on
the surface of human endothelial cells. Proc Natl Acad Sci U S A 96:2811-6.
48. Nakagawa, T., and J. Yuan. 2000. Cross-talk between two cysteine protease families.
Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887-94.
49. Nguyen, M., J. Folkman, and J. Bischoff. 1992. 1-Deoxymannojirimycin inhibits
capillary tube formation in vitro. Analysis of N-linked oligosaccharides in bovine
capillary endothelial cells. J Biol Chem 267:26157-65.
50. O'Reilly, M. S., L. Holmgren, C. Chen, and J. Folkman. 1996. Angiostatin induces
and sustains dormancy of human primary tumors in mice. Nat Med 2:689-92.
51. O'Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S.
Lane, Y. Cao, E. H. Sage, and J. Folkman. 1994. Angiostatin: a novel angiogenesis
inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell
79:315-28.
52. Pedersen, K. M., B. Finsen, J. E. Celis, and N. A. Jensen. 1999. muFKBP38: a
novel murine immunophilin homolog differentially expressed in Schwannoma cells
and central nervous system neurons in vivo. Electrophoresis 20:249-55.
53. Raser, K. J., A. Posner, and K. K. Wang. 1995. Casein zymography: a method to
study μ-calpain, m-calpain, and their inhibitory agents. Arch Biochem Biophys
319:211-6.
54. Redlitz, A., G. Daum, and E. H. Sage. 1999. Angiostatin diminishes activation of the
mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular
endothelial cells. J Vasc Res 36:28-34.
55. Seo, D. W., H. Li, L. Guedez, P. T. Wingfield, T. Diaz, R. Salloum, B. Y. Wei, and
W. G. Stetler-Stevenson. 2003. TIMP-2 mediated inhibition of angiogenesis: an
MMP-independent mechanism. Cell 114:171-80.
56. Shimizu, S., and Y. Tsujimoto. 1998. [Molecular mechanism of apoptosis].
Seikagaku 70:14-21.
57. Shirane, M., and K. I. Nakayama. 2003. Inherent calcineurin inhibitor FKBP38
targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol 5:28-37.
60
58. Silverman, K. J., D. P. Lund, B. R. Zetter, L. L. Lainey, J. A. Shahood, D. G.
Freiman, J. Folkman, and A. C. Barger. 1988. Angiogenic activity of adipose tissue.
Biochem Biophys Res Commun 153:347-52.
59. Sim, B. K., N. J. MacDonald, and E. R. Gubish. 2000. Angiostatin and endostatin:
endogenous inhibitors of tumor growth. Cancer Metastasis Rev 19:181-90.
60. Soff, G. A. 2000. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev
19:97-107.
61. Takahashi, T., C. Kalka, H. Masuda, D. Chen, M. Silver, M. Kearney, M. Magner,
J. M. Isner, and T. Asahara. 1999. Ischemia- and cytokine-induced mobilization of
bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med
5:434-8.
62. Tarui, T., M. Majumdar, L. A. Miles, W. Ruf, and Y. Takada. 2002.
Plasmin-induced migration of endothelial cells. A potential target for the
anti-angiogenic action of angiostatin. J Biol Chem 277:33564-70.
63. Troyanovsky, B., T. Levchenko, G. Mansson, O. Matvijenko, and L. Holmgren.
2001. Angiomotin: an angiostatin binding protein that regulates endothelial cell
migration and tube formation. J Cell Biol 152:1247-54.
64. van de Water, B., J. F. Nagelkerke, and J. L. Stevens. 1999. Dephosphorylation of
focal adhesion kinase (FAK) and loss of focal contacts precede caspase-mediated
cleavage of FAK during apoptosis in renal epithelial cells. J Biol Chem 274:13328-37.
65. Veiseth, E., S. D. Shackelford, T. L. Wheeler, and M. Koohmaraie. 2001. Effect of
postmortem storage on μ-calpain and m-calpain in ovine skeletal muscle. J Anim Sci
79:1502-8.
66. Veitonmaki, N., R. Cao, L. H. Wu, T. L. Moser, B. Li, S. V. Pizzo, B. Zhivotovsky,
and Y. Cao. 2004. Endothelial cell surface ATP synthase-triggered caspase-apoptotic
pathway is essential for k1-5-induced antiangiogenesis. Cancer Res 64:3679-86.
67. Wang, K. K. 2000. Calpain and caspase: can you tell the difference? Trends Neurosci
23:20-6.
68. Wen, L. P., J. A. Fahrni, S. Troie, J. L. Guan, K. Orth, and G. D. Rosen. 1997.
Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem
272:26056-61.
69. Xu, J., C. H. Yeh, S. Chen, L. He, S. L. Sensi, L. M. Canzoniero, D. W. Choi, and
61
C. Y. Hsu. 1998. Involvement of de novo ceramide biosynthesis in tumor necrosis
factor-alpha/cycloheximide-induced cerebral endothelial cell death. J Biol Chem
273:16521-6.
70. 程靜暐。不同血纖維蛋白溶酶原片段抑制血管新生能力在基因治療上的療效。國
立成功大學生物化學研究所碩士論文,2002。
71. 張文馨。血纖維蛋白溶酶原片段K420-436 和K420-448 的抗血管新生活性。國立成功
大學生物化學研究所碩士論文,2003。
72. 吳姿儀。血纖維蛋白溶酶原片段引發內皮細胞凋亡之探討。國立成功大學生物化
學研究所碩士論文,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊