跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳家如
研究生(外文):Jia-ru Wu
論文名稱:Snail在TPA造成肝癌細胞生長抑制、上皮-間質轉型及移動之多重性調節作用
論文名稱(外文):Multiple Roles of Snail in Regulation for TPA-Triggered Growth Inhibition, Epithelial-Mesenchymal Transition and Migration of HepG2 Cells
指導教授:吳文陞
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
畢業學年度:94
語文別:中文
論文頁數:63
中文關鍵詞:Snail
外文關鍵詞:Snail
相關次數:
  • 被引用被引用:1
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
我們探討佛波醇酯腫瘤促進劑TPA (12-O-tetradecanoyl-phorbol 13-acetate)造成肝癌細胞株HepG2生長抑制、EMT (epithelial-mesenchymal transitions)以及細胞移動的轉錄機制。根據過去的報導指出, 轉錄因子Snail會抑制細胞間黏附複合體中E-cadherin的表達而導致EMT的發生與細胞的移動;另一方面, Snail亦可透過降低Cyclin D1的表達而使得細胞週期產生停滯的現象。
在先前的實驗中, 我們發現TPA可引發HepG2細胞中Snail的表達。接著以antisense Snail oligodeoxynucleotides (AS Snail ODNs)轉染至細胞後則發現可避免掉TPA對HepG2引發的作用, 包括生長抑制 (細胞週期靜止在G1 phase), EMT以及細胞的移動。此外, 在AS Snail ODN轉染至HepG2後也可避免TPA誘發Cyclin依賴性激酶 (CDK)抑制蛋白p15INK4b基因的表達以及抑制E-cadherin和Cyclin D1基因的表達。
除了用AS Snail ODNs抑制TPA引發的Snail表現研究Snail是否為TPA造成HepG2細胞移動與生長抑制現象所需之蛋白之外, 我們亦建立穩定表達Snail的HepG2細胞, 於細胞移動及生長抑制兩方面做觀察, 結果發現單獨Snail的表現雖不足以抑制E-cadherin的表達但卻可促進細胞移動性的增加, 另外, 在Snail單獨的表現下Cyclin D1的表現不受影響, 但是卻能增加p15INK4b基因的表達並促進細胞在G1階段的比例。
總結我們的實驗結果顯示,轉錄因子Snail基因之表現為TPA抑制E-cadherin基因表達而造成HepG2細胞EMT及移動以及誘發CDK抑制者p15INK4b基因的表達以及抑制Cyclin D1的表達而導致HepG2生長停滯所必須。在Snail overexpressing HepG2的細胞中只有p15 INK4b如我們預期有表現量的提高, 而Cyclin D1及E-cahedrin則意外的沒有被抑制甚至E-cahedrin的表現不降反升。這個不一致的現象反映著snail調節基因表現的複雜性。未來, 我們將試著研究一些與EMT和細胞移動相關的基因, 如Fibronectin, Integrin, MMPs等, 以瞭解在Snail overexpressing HepG2細胞中 Snail是藉由調節哪些基因而造成這些作用。
We are investigating the transcriptional mechanisms for growth inhibition, epithelial-mesenchymal transitions (EMTs) and migration of the hepatoma cell line HepG2 triggered by the phorbol ester tumor promoter TPA (12-O-tetradecanoyl- phorbol 13-acetate). The transcriptional factor, Snail, has been previously shown to be responsible for reduction of gene expression of the cell-cell adhesion molecule E-cadherin resulting in EMT and cell migration. On the other hand Snail may also trigger cell cycle arrest by down-regulation of Cyclin D1.
In this study, we found Snail can be induced by TPA and antisense Snail oligodeoxynucleotides can simultaneously prevent all the cellular effects of TPA on HepG2 including growth inhibition, EMT and migration of HepG2. Consistently, the preventive effect of AS snail ODNs on TPA-induced down regulation of cell-cell adhesion molecule E-cadherin was observed. On the other hand, in HepG2cell overexpressing Snail we found TPA-induced upregulation of the CDK inhibitor p15INK4b and downregulation of Cyclin D1 were also attenuated by transfection of AS Snail.
We also established HepG2 clone stably overexpressing Snail for investigating whether Snail alone is sufficient for regulation of migration and growth of HepG2. We observed that Snail-overexpressing HepG2 acquired higher migratory ability than parental HepG2, however, E-cadherin expression was not decreased. On the other hand, Snail-overexpressing HepG2 exhibit higher doubling time of cell growth and increased G1 phase of the cell cycle accompanied with enhanced p15INK4b gene expression, however, decreased Cyclin D1 was not observed.
In conclusion, the induction of Snail was required not only for TPA-suppressed gene expression of E-cahedrin resulting in EMT and migration but also for upregulation of CDK inhibitor and downregulation of Cyclin D1 leading to G1 cell cycle arrest of HepG2 triggered by TPA. On the other hand, Snail seems to be sufficient for triggering growth retardation and cell migration of HepG2. On the gene level, Snail was sufficient for induction of p15INK4b but not for suppression of E-cahedrin and Cyclin D1. In the future more experiments should be done to investigate the role of additional genes such as Fibronectin, Integrin , MMPs responsible for snail-triggered EMT and migration in HepG2.
英文摘要…………………………………………………………………………….. 1
中文摘要…………………………………………………………………………….. 3
壹、緒論………………………………………………………………………….. 5
貳、實驗材料與方法…………………………………………………………….. 10
參、實驗結果…………………………………………………………………….. 27
肆、結論與討論………………………………………………………………….. 36
伍、參考文獻…………………………………………………………………….. 41
陸、圖表目錄
圖一………………………………………………………………………….. 47
圖二………………………………………………………………………….. 48
圖三、圖四………………………………………………………………….. 49
圖五………………………………………………………………………….. 50
圖六………………………………………………………………………….. 51
圖七………………………………………………………………………….. 52
圖八………………………………………………………………………….. 53
圖九………………………………………………………………………….. 54
圖十………………………………………………………………………….. 55
圖十一……………………………………………………………………….. 56
圖十二……………………………………………………………………….. 57
圖十三……………………………………………………………………….. 58
表一………………………………………………………………………….. 59
圖十四……………………………………………………………………….. 60
1.Barrallo-Gimeno, A., and M. A. Nieto. 2005. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151-3161.
2.Batlle, E., E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, and A. Garcia De Herreros. 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84-89.
3.Cano, A., M. A. Perez-Moreno, I. Rodrigo, A. Locascio, M. J. Blanco, M. G. del Barrio, F. Portillo, and M. A. Nieto. 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76-83.
4.Castanon, I., and M. K. Baylies. 2002. A Twist in fate: evolutionary comparison of Twist structure and function. Gene 287:11-22.
5.Chambers, A. F., A. C. Groom, and I. C. MacDonald. 2002. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563-572.
6.Chen, Z. F., and R. R. Behringer. 1995. twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9:686-699.
7.Comijn, J., G. Berx, P. Vermassen, K. Verschueren, L. van Grunsven, E. Bruyneel, M. Mareel, D. Huylebroeck, and F. van Roy. 2001. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267-1278.
8.Evans, T., E. T. Rosenthal, J. Youngblom, D. Distel, and T. Hunt. 1983. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389-396.
9.Fidler, I. J. 2003. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3:453-458.
10.Fujita, N., D. L. Jaye, M. Kajita, C. Geigerman, C. S. Moreno, and P. A. Wade. 2003. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113:207-219.
11.Grotegut, S., D. von Schweinitz, G. Christofori, and F. Lehembre. 2006. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. Embo J 25:3534-3545.
12.Guaita, S., I. Puig, C. Franci, M. Garrido, D. Dominguez, E. Batlle, E. Sancho, S. Dedhar, A. G. De Herreros, and J. Baulida. 2002. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277:39209-39216.
13.Hajra, K. M., D. Y. Chen, and E. R. Fearon. 2002. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613-1618.
14.Hay, E. D. 1995. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154:8-20.
15.Ikenouchi, J., M. Matsuda, M. Furuse, and S. Tsukita. 2003. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959-1967.
16.Kajita, M., K. N. McClinic, and P. A. Wade. 2004. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24:7559-7566.
17.Kang, Y., and J. Massague. 2004. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277-279.
18.Lloyd, R. V., L. A. Erickson, L. Jin, E. Kulig, X. Qian, J. C. Cheville, and B. W. Scheithauer. 1999. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154:313-323.
19.Mauhin, V., Y. Lutz, C. Dennefeld, and A. Alberga. 1993. Definition of the DNA-binding site repertoire for the Drosophila transcription factor SNAIL. Nucleic Acids Res 21:3951-3957.
20.Miyoshi, A., Y. Kitajima, S. Kido, T. Shimonishi, S. Matsuyama, K. Kitahara, and K. Miyazaki. 2005. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 92:252-258.
21.Nelson, W. J., and R. Nusse. 2004. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483-1487.
22.Nieto, M. A. 2002. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155-166.
23.Palmer, H. G., M. J. Larriba, J. M. Garcia, P. Ordonez-Moran, C. Pena, S. Peiro, I. Puig, R. Rodriguez, R. de la Fuente, A. Bernad, M. Pollan, F. Bonilla, C. Gamallo, A. G. de Herreros, and A. Munoz. 2004. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 10:917-919.
24.Pines, J. 1991. Cyclins: wheels within wheels. Cell Growth Differ 2:305-310.
25.Savagner, P., D. F. Kusewitt, E. A. Carver, F. Magnino, C. Choi, T. Gridley, and L. G. Hudson. 2005. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 202:858-866.
26.Sherr, C. J. 1994. G1 phase progression: cycling on cue. Cell 79:551-555.
27.Soo, K., M. P. O'Rourke, P. L. Khoo, K. A. Steiner, N. Wong, R. R. Behringer, and P. P. Tam. 2002. Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Dev Biol 247:251-270.
28.Thiery, J. P. 2002. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442-454.
29.Thisse, B., M. el Messal, and F. Perrin-Schmitt. 1987. The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 15:3439-3453.
30.Tribulo, C., M. J. Aybar, S. S. Sanchez, and R. Mayor. 2004. A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Dev Biol 275:325-342.
31.Tripathi, M. K., S. Misra, and G. Chaudhuri. 2005. Negative regulation of the expressions of cytokeratins 8 and 19 by SLUG repressor protein in human breast cells. Biochem Biophys Res Commun 329:508-515.
32.Vega, S., A. V. Morales, O. H. Ocana, F. Valdes, I. Fabregat, and M. A. Nieto. 2004. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18:1131-1143.
33.Vermeulen, K., D. R. Van Bockstaele, and Z. N. Berneman. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131-149.
34.Wu, W. S. 2003. ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin a. Oncogene 22:955-963.
35.Wu, W. S., and H. Y. Hsu. 2001. Involvement of p-15(INK4b) and p-16 (INK4a) gene expression in saikosaponin a and TPA-induced growth inhibition of HepG2 cells. Biochem Biophys Res Commun 285:183-187.
36.Yamashita, S., C. Miyagi, T. Fukada, N. Kagara, Y. S. Che, and T. Hirano. 2004. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429:298-302.
37.Yang, J., S. A. Mani, J. L. Donaher, S. Ramaswamy, R. A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, and R. A. Weinberg. 2004. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927-939.
38.Yook, J. I., X. Y. Li, I. Ota, E. R. Fearon, and S. J. Weiss. 2005. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280:11740-11748.
39.Zhou, B. P., J. Deng, W. Xia, J. Xu, Y. M. Li, M. Gunduz, and M. C. Hung. 2004. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6:931-940.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 郭碧雲、黃松元、陳瑞堅(2005)。某大學職員情緒管理衛生教育介入活動成效研究。學校衛生,46,25-52。
2. 郭碧雲、黃松元、陳瑞堅(2005)。某大學職員情緒管理衛生教育介入活動成效研究。學校衛生,46,25-52。
3. 張學善(2004)。情緒管理教學對提升教育學程學生情緒智慧之成效研究。彰化師大輔導學報,26(2),37-56。
4. 張學善(2004)。情緒管理教學對提升教育學程學生情緒智慧之成效研究。彰化師大輔導學報,26(2),37-56。
5. 吳英璋(2001)。情緒教育的理論與內涵。學生輔導,75,66-79。
6. 吳英璋(2001)。情緒教育的理論與內涵。學生輔導,75,66-79。
7. 王蓁蓁(2001)。台北縣國中生之壓力源、因應方式與生活適應之相關研究。生活科學學報,7,61-86。
8. 王蓁蓁(2001)。台北縣國中生之壓力源、因應方式與生活適應之相關研究。生活科學學報,7,61-86。
9. 黃玉、樓美玲(2005)。青少年的父母婚衝突、負向情緒與偏差行為之相關性。醫護科技學刊,7(2),129-139。
10. 黃玉、樓美玲(2005)。青少年的父母婚衝突、負向情緒與偏差行為之相關性。醫護科技學刊,7(2),129-139。
11. 葉碧玲、葉玉珠(2001)。國中生性別、年級、父母教育程度、批判思考與情緒智力之關係。國立台灣師範大學教育心理學系教育心理學報,32(2),45-70。
12. 葉碧玲、葉玉珠(2001)。國中生性別、年級、父母教育程度、批判思考與情緒智力之關係。國立台灣師範大學教育心理學系教育心理學報,32(2),45-70。
13. 鄭惠文(2000)。讓孩子學會當情緒的主人:從情緒管理教育談起。教師之友,41(3),61-65。
14. 鄭惠文(2000)。讓孩子學會當情緒的主人:從情緒管理教育談起。教師之友,41(3),61-65。
15. 蘇建文(1981)。兒童及青少年情緒穩定性發展之研究。家政教育,8(4),1-8。