跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威成
研究生(外文):Wei-Cheng Chen
論文名稱:生長激素療效之藥理遺傳學研究
論文名稱(外文):Pharmocogenetic study on efficacy of recombinant growth hormone treatment in short stature patients with growth hormone deficiency
指導教授:蔡輔仁蔡輔仁引用關係萬磊萬磊引用關係
指導教授(外文):Fuu-Jen TsaiLei Wan
學位類別:碩士
校院名稱:亞洲大學
系所名稱:生物科技與生物資訊學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:生長激素生長激素缺乏症單核苷酸多型性
外文關鍵詞:growth hormonegrowth hormone deficiencysingle nucleotide polymorphism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生長激素(growth hormone, GH)是促進人體生長最重要的激素,尤其是對青春期前的兒童更為重要。造成生長遲緩的因素可分為環境和遺傳因素,而生長激素是治療不同原因所造成生長遲緩的最佳藥物。在臨床治療發現,生長激素缺乏症(growth hormone deficiency, GHD)的病人在接受生長激素治療後的第一年效果顯著,但生長高度卻因人而異,故認為與個人的遺傳基因特異性有關。我們以單核苷酸多型性(single nucleotide polymorphism, SNP)的方法篩選出適合而且與生長調節有關的遺傳標記。分析的結果顯示GHR codon440(G/T)在統計上有顯著的差異(p<0.05)。此多型性是核苷酸從guanine(G)變成thymine(T),導致在GHR基因上的第440個氨基酸從cysteine變成了phenylananine。經身高的統計發現帶有GHR codon440 T/T genotype的GHD病人在接受生長激素治療的第一年,其平均生長高度較其他兩種genotype還來的高。為了瞭解這單核苷酸多型性所產生的機轉,我們將GHR codon440 G/G和T/T genotype的cDNA送入CHO-K1細胞做表現,再利用報導基因分析比較兩者之間活性的差異。結果顯示GHR-T/T genotype經由GH刺激後所產生的訊號傳遞較GHR-G/G genotype強(p=0.017)。另外,在生長激素誘導下,帶有GHR-T/T genotype的CHO-K1細胞,其p-STAT5(Tyr694)與p-PKCβII(Ser660)的量高於帶有GHR-G/G genotype的CHO-K1細胞。因此,我們認為GHR codon440(G/T)基因的多型性與GHD病人身高的調節有很大的相關性。
Growth hormone (GH) is the most important one to stimulate human body growth and it is especially significant for children before puberty. Although the factors resulting in slow growth can be divided into the environment factor and the heredity factor, administering growth hormone is the best treatment for different slow growth. In clinical study, the therapy efficacy is significant for the patients with growth hormone deficiency (GHD), one year after treatment with growth hormone. However, their growth altitudes are different. Hence, it is thought to relate to individual hereditary characteristics. Here, we found out the suitable genetic marker related growth adjustment by assaying single nucleotide polymorphism (SNP). The results for GHR condon440 (G/T) revealed a statistically significant difference between GHD patients and normal controls (p<0.05). When the nucleotide change in this site is from G to T, it would lead to a non-synonymous amino acid change from cysteine to phenylalanine. One year after growth hormone treatment, GHD patients with GHR-T/T genotype gained higher average height than G/G and G/T genotypes. In order to realize the mechanism of this polymorphism, growth hormone receptors with G/G or T/T genotype in their condon440 were transfected into CHO-K1 cells. Reporter assays for TK promoter were conducted to compare bioactivity bioactivity of two genotypes. Our data revealed that Cells with T/T genotoype of GHR had higher alkaline phosphatase activity than G/G genotype after luciferase activity was normalized. Futhermore, GH-induced phosphorylation of STAT5 (Tyr694) and p-PKCβII(Ser660)in CHO-K1 cells expressing T/T genotype of GHR was higher than those of G/G genotype. Therefore, it could be concluded that GHR condon440 (G/T) polymorphism is obviously associated to GHD patient’s tall regulation.
致謝………………………………………………………………1
中文摘要…………………………………………………………2
Abstract…………………………………………………………4

第一章 前言…………………………………………………6
第一節 導論………………………………………………7
第二節 研究目的………………………………………10

第二章 文獻回顧……………………………………………11
第一節 人體的生長……………………………………12
第二節 生長激素的調節與生理功能…………………14
第三節 生長激素缺乏的臨床症狀……………………16
第四節 生長激素的臨床治療…………………………18
第五節 生長激素在細胞內訊息傳導機制……………19
一、生長激素的結構………………………………19
二、生長激素受體…………………………………20
三、GHR的訊息傳導路徑…………………………23
四、GHR訊息傳導的調控…………………………26

第三章 材料與方法…………………………………………29
第一節 病人及檢體的收集…………………………………30
第二節 DNA萃取……………………………………………31
第三節 SNP分析……………………………………………32
第四節 RNA萃取……………………………………………33
第五節 GHR-G/G表現質體的製作…………………………34
第六節 GHR-T/T表現質體的製作…………………………36
第七節 轉染(Transfection)…………………………37
第八節 細胞培養……………………………………………38
第九節 免疫螢光染色(Immunofluoresence)………39
第十節 報導基因分析(Reporter assay)……………40
第十一節 西方墨點分析(Western blotting)………42
第十二節 統計方法…………………………………………44

第四章 結果…………………………………………………45
一、病人的基本資料……………………………………46
二、SNP的分析…………………………………………46
三、多變項回歸分析……………………………………47
四、病患接受治療後的第一年身高統計………………48
五、免疫螢光染色………………………………………48
六、報導基因分析………………………………………49
七、西方墨點分析………………………………………50

第五章 討論…………………………………………………51

圖與表………………………………………………………57

參考文獻……………………………………………………73

附錄…………………………………………………………83
1.Tanner, J.M. and R.H. Whitehouse, Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child, 1976. 51(3): p. 170-9.
2.Attie, K.M., The importance of growth hormone replacement therapy for bone mass in young adults with growth hormone deficiency. J Pediatr Endocrinol Metab, 2000. 13 Suppl 2: p. 1011-21.
3.Albertsson-Wikland, K., et al., Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: relation to puberty. J Clin Endocrinol Metab, 1994. 78(5): p. 1195-201.
4.Katakami, H., [Growth hormone-releasing hormone (GHRH)]. Nippon Rinsho, 2005. 63 Suppl 8: p. 166-71.
5.Saito, H. and E. Hosoi, [Somatostatin]. Nippon Rinsho, 2005. 63 Suppl 8: p. 172-6.
6.Siebler, T., et al., Glucocorticoids, thyroid hormone and growth hormone interactions: implications for the growth plate. Horm Res, 2001. 56 Suppl 1: p. 7-12.
7.Massague, J. and M.P. Czech, The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem, 1982. 257(9): p. 5038-45.
8.Tillmann, V., et al., Monitoring serum insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), IGF-I/IGFBP-3 molar ratio and leptin during growth hormone treatment for disordered growth. Clin Endocrinol (Oxf), 2000. 53(3): p. 329-36.
9.Kristrom, B., et al., Growth response to growth hormone (GH) treatment relates to serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in short children with various GH secretion capacities. Swedish Study Group for Growth Hormone Treatment. J Clin Endocrinol Metab, 1997. 82(9): p. 2889-98.
10.Leong, S.R., et al., Structure and functional expression of the acid-labile subunit of the insulin-like growth factor-binding protein complex. Mol Endocrinol, 1992. 6(6): p. 870-6.
11.Voerman, B.J., et al., Effects of human growth hormone on fuel utilization and mineral balance in critically ill patients on full intravenous nutritional support. J Crit Care, 1994. 9(3): p. 143-50.
12.Tsushima, T., [Effect of growth hormone on lipid metabolism]. Nippon Rinsho, 2001. 59 Suppl 2: p. 407-11.
13.Areberg, J., et al., Only a temporary increase of the amount of body protein during long-term treatment with growth-hormone (GH) of adults with GH-deficiency (GHD). Appl Radiat Isot, 1998. 49(5-6): p. 667-9.
14.Shalet, S.M., et al., Normal growth despite abnormalities of growth hormone secretion in children treated for acute leukemia. J Pediatr, 1979. 94(5): p. 719-22.
15.Ahmed, S.R. and S.M. Shalet, Hypothalamic growth hormone releasing factor deficiency following cranial irradiation. Clin Endocrinol (Oxf), 1984. 21(5): p. 483-8.
16.Colao, A., et al., The cardiovascular risk of adult GH deficiency (GHD) improved after GH replacement and worsened in untreated GHD: a 12-month prospective study. J Clin Endocrinol Metab, 2002. 87(3): p. 1088-93.
17.Khan, A.S., et al., Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res, 2002. 54(1): p. 25-35.
18.Gibbs, C.J., Jr., et al., Clinical and pathological features and laboratory confirmation of Creutzfeldt-Jakob disease in a recipient of pituitary-derived human growth hormone. N Engl J Med, 1985. 313(12): p. 734-8.
19.Vance, M.L. and N. Mauras, Growth hormone therapy in adults and children. N Engl J Med, 1999. 341(16): p. 1206-16.
20.Gertner, J.M., et al., Renewed catch-up growth with increased replacement doses of human growth hormone. J Pediatr, 1987. 110(3): p. 425-8.
21.Hattori, N., K. Kitagawa, and C. Inagaki, Human lymphocytes express hGH-N gene transcripts of 22kDa, 20kDa and minor forms of GH, but not hGH-V gene. Eur J Endocrinol, 1999. 141(4): p. 413-8.
22.Momomura, S., et al., Detection of exogenous growth hormone (GH) administration by monitoring ratio of 20kDa- and 22kDa-GH in serum and urine. Endocr J, 2000. 47(1): p. 97-101.
23.de Vos, A.M., M. Ultsch, and A.A. Kossiakoff, Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science, 1992. 255(5042): p. 306-12.
24.Clackson, T. and J.A. Wells, A hot spot of binding energy in a hormone-receptor interface. Science, 1995. 267(5196): p. 383-6.
25.Cunningham, B.C., et al., Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science, 1991. 254(5033): p. 821-5.
26.Wells, J.A., Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A, 1996. 93(1): p. 1-6.
27.Fuh, G., et al., Rational design of potent antagonists to the human growth hormone receptor. Science, 1992. 256(5064): p. 1677-80.
28.Cosman, D., et al., A new cytokine receptor superfamily. Trends Biochem Sci, 1990. 15(7): p. 265-70.
29.Ihle, J.N., et al., Signaling by the cytokine receptor superfamily. Ann N Y Acad Sci, 1998. 865: p. 1-9.
30.Ihle, J.N., et al., Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol, 1995. 13: p. 369-98.
31.Mathews, L.S., B. Enberg, and G. Norstedt, Regulation of rat growth hormone receptor gene expression. J Biol Chem, 1989. 264(17): p. 9905-10.
32.Waters MJ. In: Kostyo JL, e., The growth hormone receptor handbook of physiology, Oxford Univ. Press. 1997. 5: p. (Chap. 14) 1301-48.
33.Frank, S.J., et al., Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor. J Biol Chem, 1995. 270(24): p. 14776-85.
34.Goujon, L., et al., Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction. Proc Natl Acad Sci U S A, 1994. 91(3): p. 957-61.
35.VanderKuur, J.A., et al., Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase. J Biol Chem, 1994. 269(34): p. 21709-17.
36.Wang, Y.D., K. Wong, and W.I. Wood, Intracellular tyrosine residues of the human growth hormone receptor are not required for the signaling of proliferation or Jak-STAT activation. J Biol Chem, 1995. 270(13): p. 7021-4.
37.Amit, T., et al., A membrane-fixed, truncated isoform of the human growth hormone receptor. J Clin Endocrinol Metab, 1997. 82(11): p. 3813-7.
38.Friend, K.E., R. Radinsky, and I.E. McCutcheon, Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J Neurosurg, 1999. 91(1): p. 93-9.
39.Horan, M., et al., Genetic variation at the growth hormone (GH1) and growth hormone receptor (GHR) loci as a risk factor for hypertension and stroke. Hum Genet, 2006.
40.Hujeirat, Y., et al., Growth Hormone Receptor Sequence Changes Do Not Play a Role in Determining Height in Children with Idiopathic Short Stature. Horm Res, 2006. 65(4): p. 210-216.
41.Jorge, A.A., et al., Growth hormone (GH) pharmacogenetics: influence of GH receptor exon 3 retention or deletion on first-year growth response and final height in patients with severe GH deficiency. J Clin Endocrinol Metab, 2006. 91(3): p. 1076-80.
42.Nagano, M., et al., Expression of prolactin and growth hormone receptor genes and their isoforms in the gastrointestinal tract. Am J Physiol, 1995. 268(3 Pt 1): p. G431-42.
43.Pantel, J., et al., Heterozygous nonsense mutation in exon 3 of the growth hormone receptor (GHR) in severe GH insensitivity (Laron syndrome) and the issue of the origin and function of the GHRd3 isoform. J Clin Endocrinol Metab, 2003. 88(4): p. 1705-10.
44.Pantel, J., et al., Species-specific alternative splice mimicry at the growth hormone receptor locus revealed by the lineage of retroelements during primate evolution. J Biol Chem, 2000. 275(25): p. 18664-9.
45.Wagner, K., et al., Polymorphisms in the growth hormone receptor: A case-control study in breast cancer. Int J Cancer, 2006. 118(11): p. 2903-6.
46.Baumann, G., et al., A specific growth hormone-binding protein in human plasma: initial characterization. J Clin Endocrinol Metab, 1986. 62(1): p. 134-41.
47.Postel-Vinay, M.C., et al., Identification of prolactin and growth hormone binding proteins in rabbit milk. Proc Natl Acad Sci U S A, 1991. 88(15): p. 6687-90.
48.Amit, T., et al., Growth hormone-binding protein (GH-BP) levels in follicular fluid from human preovulatory follicles: correlation with serum GH-BP levels. J Clin Endocrinol Metab, 1993. 77(1): p. 33-9.
49.Sotiropoulos, A., et al., Evidence for generation of the growth hormone-binding protein through proteolysis of the growth hormone membrane receptor. Endocrinology, 1993. 132(4): p. 1863-5.
50.Alele, J., et al., Blockade of growth hormone receptor shedding by a metalloprotease inhibitor. Endocrinology, 1998. 139(4): p. 1927-35.
51.Baumann, G., M.A. Shaw, and T.A. Buchanan, In vivo kinetics of a covalent growth hormone-binding protein complex. Metabolism, 1989. 38(4): p. 330-3.
52.Mercado, M., et al., Distribution of growth hormone receptor messenger ribonucleic acid containing and lacking exon 3 in human tissues. J Clin Endocrinol Metab, 1994. 78(3): p. 731-5.
53.Urbanek, M., et al., Expression of a human growth hormone (hGH) receptor isoform is predicted by tissue-specific alternative splicing of exon 3 of the hGH receptor gene transcript. Mol Endocrinol, 1992. 6(2): p. 279-87.
54.Dos Santos, C., et al., A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat Genet, 2004. 36(7): p. 720-4.
55.Argetsinger, L.S. and C. Carter-Su, Mechanism of signaling by growth hormone receptor. Physiol Rev, 1996. 76(4): p. 1089-107.
56.Argetsinger, L.S. and C. Carter-Su, Growth hormone signalling mechanisms: involvement of the tyrosine kinase JAK2. Horm Res, 1996. 45 Suppl 1: p. 22-4.
57.Darnell, J.E., Jr., STATs and gene regulation. Science, 1997. 277(5332): p. 1630-5.
58.Tiulpakov, A., et al., A novel C-terminal growth hormone receptor (GHR) mutation results in impaired GHR-STAT5 but normal STAT-3 signaling. J Clin Endocrinol Metab, 2005. 90(1): p. 542-7.
59.Sotiropoulos, A., et al., Distinct cytoplasmic regions of the growth hormone receptor are required for activation of JAK2, mitogen-activated protein kinase, and transcription. Endocrinology, 1994. 135(4): p. 1292-8.
60.Vanderkuur, J.A., et al., Signaling molecules involved in coupling growth hormone receptor to mitogen-activated protein kinase activation. Endocrinology, 1997. 138(10): p. 4301-7.
61.Yamauchi, T., et al., Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature, 1997. 390(6655): p. 91-6.
62.Davidson, M.B., Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev, 1987. 8(2): p. 115-31.
63.Eisenhauer, K.M., et al., Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein. Biol Reprod, 1995. 53(1): p. 13-20.
64.Goh, E.L., et al., Growth hormone-induced reorganization of the actin cytoskeleton is not required for STAT5 (signal transducer and activator of transcription-5)-mediated transcription. Endocrinology, 1997. 138(8): p. 3207-15.
65.Souza, S.C., et al., Growth hormone stimulates tyrosine phosphorylation of insulin receptor substrate-1. J Biol Chem, 1994. 269(48): p. 30085-8.
66.Argetsinger, L.S., et al., Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem, 1995. 270(24): p. 14685-92.
67.Ridderstrale, M., E. Degerman, and H. Tornqvist, Growth hormone stimulates the tyrosine phosphorylation of the insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase in primary adipocytes. J Biol Chem, 1995. 270(8): p. 3471-4.
68.Argetsinger, L.S., et al., Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem, 1996. 271(46): p. 29415-21.
69.Yamauchi, T., et al., Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. J Biol Chem, 1998. 273(25): p. 15719-26.
70.Moutoussamy, S., et al., Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J Biol Chem, 1998. 273(26): p. 15906-12.
71.Musashi, M., S. Ota, and N. Shiroshita, The role of protein kinase C isoforms in cell proliferation and apoptosis. Int J Hematol, 2000. 72(1): p. 12-9.
72.Ron, D. and M.G. Kazanietz, New insights into the regulation of protein kinase C and novel phorbol ester receptors. Faseb J, 1999. 13(13): p. 1658-76.
73.Le Cam, A., et al., cis-Acting elements controlling transcription from rat serine protease inhibitor 2.1 gene promoter. Characterization of two growth hormone response sites and a dominant purine-rich element. J Biol Chem, 1994. 269(34): p. 21532-9.
74.Krebs, D.L. and D.J. Hilton, SOCS: physiological suppressors of cytokine signaling. J Cell Sci, 2000. 113 ( Pt 16): p. 2813-9.
75.Adams, T.E., et al., Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem, 1998. 273(3): p. 1285-7.
76.Ram, P.A. and D.J. Waxman, SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem, 1999. 274(50): p. 35553-61.
77.Tollet-Egnell, P., et al., Growth hormone regulation of SOCS-2, SOCS-3, and CIS messenger ribonucleic acid expression in the rat. Endocrinology, 1999. 140(8): p. 3693-704.
78.Naka, T., et al., Structure and function of a new STAT-induced STAT inhibitor. Nature, 1997. 387(6636): p. 924-9.
79.Davey, H.W., et al., STAT5b mediates the GH-induced expression of SOCS-2 and SOCS-3 mRNA in the liver. Mol Cell Endocrinol, 1999. 158(1-2): p. 111-6.
80.Yasukawa, H., et al., The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. Embo J, 1999. 18(5): p. 1309-20.
81.Narazaki, M., et al., Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13130-4.
82.Hansen, J.A., et al., Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Mol Endocrinol, 1999. 13(11): p. 1832-43.
83.Matsumoto, A., et al., Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol, 1999. 19(9): p. 6396-407.
84.Metcalf, D., et al., Gigantism in mice lacking suppressor of cytokine signalling-2. Nature, 2000. 405(6790): p. 1069-73.
85.Gebert, C.A., S.H. Park, and D.J. Waxman, Termination of growth hormone pulse-induced STAT5b signaling. Mol Endocrinol, 1999. 13(1): p. 38-56.
86.Jiao, H., et al., Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol, 1996. 16(12): p. 6985-92.
87.Hackett, R.H., et al., Mapping of a cytoplasmic domain of the human growth hormone receptor that regulates rates of inactivation of Jak2 and Stat proteins. J Biol Chem, 1997. 272(17): p. 11128-32.
88.Kim, S.O., et al., Involvement of the Src homology 2-containing tyrosine phosphatase SHP-2 in growth hormone signaling. J Biol Chem, 1998. 273(4): p. 2344-54.
89.Stofega, M.R., et al., Growth hormone regulation of SIRP and SHP-2 tyrosyl phosphorylation and association. J Biol Chem, 1998. 273(12): p. 7112-7.
90.Stofega, M.R., et al., Negative regulation of growth hormone receptor/JAK2 signaling by signal regulatory protein alpha. J Biol Chem, 2000. 275(36): p. 28222-9.
91.Fernandez, L., et al., Desensitization of the growth hormone-induced Janus kinase 2 (Jak 2)/signal transducer and activator of transcription 5 (Stat5)-signaling pathway requires protein synthesis and phospholipase C. Endocrinology, 1998. 139(4): p. 1815-24.
92.Rui, L., et al., Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol, 1997. 17(11): p. 6633-44.
93.Rui, L. and C. Carter-Su, Identification of SH2-bbeta as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7172-7.
94.Enberg, B., et al., Characterisation of novel missense mutations in the GH receptor gene causing severe growth retardation. Eur J Endocrinol, 2000. 143(1): p. 71-6.
95.Iida, K., et al., The C422F mutation of the growth hormone receptor gene is not responsible for short stature. J Clin Endocrinol Metab, 1999. 84(11): p. 4214-9.
96.Thomas, M.J., The molecular basis of growth hormone action. Growth Horm IGF Res, 1998. 8(1): p. 3-11.
97.Allevato, G., et al., Identification of phenylalanine 346 in the rat growth hormone receptor as being critical for ligand-mediated internalization and down-regulation. J Biol Chem, 1995. 270(29): p. 17210-4.
98.Wang, X., et al., Identification of growth hormone receptor (GHR) tyrosine residues required for GHR phosphorylation and JAK2 and STAT5 activation. Mol Endocrinol, 1996. 10(10): p. 1249-60.
99.Herrington, J., et al., The role of STAT proteins in growth hormone signaling. Oncogene, 2000. 19(21): p. 2585-97.
100.Wu, D., I.J. Clarke, and C. Chen, The role of protein kinase C in GH secretion induced by GH-releasing factor and GH-releasing peptides in cultured ovine somatotrophs. J Endocrinol, 1997. 154(2): p. 219-30.
101.Sudarsanam, S., Structural diversity of sequentially identical subsequences of proteins: identical octapeptides can have different conformations. Proteins, 1998. 30(3): p. 228-31.
102.Minor, D.L., Jr. and P.S. Kim, Context-dependent secondary structure formation of a designed protein sequence. Nature, 1996. 380(6576): p. 730-4.
103.Ikeo, S., et al., Differential effects of growth hormone and insulin-like growth factor I on human endothelial cell migration. Am J Physiol Cell Physiol, 2001. 280(5): p. C1255-61.
104.Ishizuka, T., et al., Growth hormone secretion in human acromegalic pituitary adenomas: cyclic adenosine monophosphate and protein kinase C responses. Metabolism, 1996. 45(2): p. 206-10.
105.Steinberg, S.F., Distinctive activation mechanisms and functions for protein kinase Cdelta. Biochem J, 2004. 384(Pt 3): p. 449-59.
106.Matthews, S.A., E. Rozengurt, and D. Cantrell, Characterization of serine 916 as an in vivo autophosphorylation site for protein kinase D/Protein kinase Cmu. J Biol Chem, 1999. 274(37): p. 26543-9.
107.Le Good, J.A., et al., Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science, 1998. 281(5385): p. 2042-5.
108.Chen, C., et al., Diverse intracellular signalling systems used by growth hormone-releasing hormone in regulating voltage-gated Ca2+ or K channels in pituitary somatotropes. Immunol Cell Biol, 2000. 78(4): p. 356-68.
109.Chen, C., Growth hormone secretagogue actions on the pituitary gland: multiple receptors for multiple ligands? Clin Exp Pharmacol Physiol, 2000. 27(5-6): p. 323-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top