跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張君妍
研究生(外文):Chun-Yan Chang
論文名稱:十字花科植物黑腐病菌調控蛋白AlgR之探討
論文名稱(外文):The study of regulatory protein, AlgR in Xanthomonas campestris pv. campestris
指導教授:胡若梅,曾義雄
指導教授(外文):Rouh-Mei Hu, Yi-Hsiung Tseng
學位類別:碩士
校院名稱:臺中健康暨管理學院
系所名稱:生物資訊研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:130
中文關鍵詞:十字花科黑腐病菌噬菌體轉錄調控雙組件訊號傳遞系統
外文關鍵詞:Xanthomonas campestris pv. campestrisbacteriophagetranscriptional regulationtwo component system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要

Lf 為一能專一性感染十字花科植物黑腐病菌之線狀噬菌體。 利用跳躍子突變法破壞得到對 Lf 感染呈現抗性之 X. campestris strain P20H::miniTn5 (Tc),經定位後發現其插入點為位於隸屬細菌雙組件系統中主導轉錄調節之 algR 基因,接續利用插入法致變構築algR 基因突變株與其相對應 sensor 的 algZ 基因突變株,其突變株之特性分析結果如下:(1) algR 突變株對 Lf 具有抗性,algZ 則否。 (2) algR 及 algZ基因破壞後,其菌落外觀、生長情形、胞外酵素分泌與野生株相較並無明顯差異。 (3) algR 突變株於半固態洋菜膠之運動能力較其他菌株緩慢,但將帶有 algR 基因之 pBBADalgR 質體送入 algR突變株後,則可恢復同野生株之 Lf sensitive 性狀與swarming motility。
經蛋白序列分析發現,AlgR 的 C 端具有專一性結合於[TA][AC][CA]GTTN[AG][TG] 序列之 LytTR DNA binding domain (FhRhH [RK] [SNQ]hhVN),為了尋找可能受 algR 調控的基因,於是利用 RSAT consensus program 搜尋 X. campestris 基因體中之AlgR 結合序列,並挑選其中五個基因 (fabA、gltD、plcN、phoR、slp) 作啟動子活性分析。 結果顯示,AlgR 並非 fabA、gltD、plcN、phoR 基因表現所必須;slp 基因之啟動子活性於 algR 突變株皆遠低於野生株與 algZ 突變株,即代表 AlgR 以正向轉錄調控 slp 基因表現。 由於噬菌體早期的感染需要 type IV pilus 輔助,而 pilA1 基因主導生成 type IV pilus mayor pilin,經啟動子活性結果顯示,AlgR 以正向轉錄調控 pilA1 基因表現。
Abstract

Lf is a filamentous bacteriophage which specifically infects Xanthomonas campestris pv. campestris. A Lf resistant X. campestris strain was isolated by mini-Tn5 transposon insertional mutagenesis. The insertion site was mapped within algR, gene encoding for a transcriptional activator belonging to the microbial two component systems. Mutants of algR and algZ, the cognate sensor gene of algR, were reconstructed by insertional mutagenesis and the phenotypes of mutants were analyzed and summarized: (1) algR mutant is resistant to Lf infection and algZ mutant is still sensitive to Lf. (2) algR and algZ mutants showed no difference in colony morphology, growth rate and extracellular enzymes secretion. And (3) algR mutant, but not algZ mutant, moved slower than their parental strain on a semisolid plant. The phage sensitivity and mobility deficiency of the algR mutant were recovered after introducing an algR gene containing plasmid, pBBADalgR.
A DNA-binding domain LytTR (FhRhH[RK][SNQ]hhVN) which binds specifically to [TA][AC][CA]GTTN[AG][TG] sequence, was identified in the c-terminal of AlgR. To identify putative AlgR-regulated gene, RSAT consensus program was used to search in X. campestris genome for AlgR-binding consensus sequence. Five genes (fabA, gltD, plcN, phoR and slp) were selected for promoter activity assay. The results indicated that expression of fabA, gltD, plcN and phoR genes were not dependent on AlgR or AlgZ. slp gene promoter activity mutant was significantly lower in an algR mutant than in an algZ mutant or in their parental strain Xc17. This suggests that slp gene is positively regulated by algR. The early step of Lf infection depends on type IV pilus. Gene pilA1 encodes for the mayor pilin of type IV pilus. The promoter assay demonstrated that the expression of pilA1 gene is positively regulated by AlgR.
目錄

縮寫字對照表 I
胺基酸縮寫字對照表 V
菌種縮寫字對照表 VI
中文摘要 VIII
英文摘要 IX

壹、 前言 1

貳、 實驗材料 5

一、基因體序列 5
二、菌種、噬菌體及質體 5
三、引子 5
四、儀器設備 5
五、藥品 6
六、酵素 6
七、Marker 6
八、抗生素使用濃度 7
九、培養基 7
十、試劑與緩衝液 7

參、 實驗方法 10

一、細菌之培養 10
二、菌種之保存 10
三、噬菌體之增殖與保存 10
四、噬菌體濃度測定 (titer) 11
五、溶菌斑測試 (spot test) 12
六、生長曲線測定 12
七、細菌染色體 DNA 之製備 13
八、小量質體 DNA 之製備 13
九、聚合酶連鎖反應 (polymerase chain reaction, PCR) 14
十、質體 DNA 之限制酶切割 15
十一、DNA片段回收 15
十二、DNA接合反應 16
十三、洋菜膠體電泳分析 16
十四、勝任細胞 (competent cells) 之製備 16
十五、細菌之轉形作用(transformation) 17
十六、運動性測試 (Swaring motility) 19
十七、胞外酵素分泌測試 19
十八、蛋白質之誘導表現 20
十九、蛋白質樣本之製備 20
二十、SDS-PAGE之製備 21
二十一、蛋白質之 SDS-膠體電泳分析 21
二十二、蛋白質 Coomassie blue 染色 22
二十三、凝膠封片 22
二十四、西方墨點法 (Western blot) 22
二十五、轉印膜呈色 23
二十六、半乳糖苷酶 (-galactosidase) 酵素活性分析 24
二十七、啟動子區域預測 25
二十八、生物統計分析 25

肆、 結果與討論 26

第一部份:algR 基因之探討

一、X. campestris 之algR 基因發現 26
二、基因序列特性分析 26
三、X. campestris algR 及 algZ 基因突變株之構築 27
四、algR 及 algZ 基因突變後對X. campestris所造成之性狀影響 28
五、algR 基因互補試驗 32
六、互補株與轉殖株之特性分析 34
七、AlgR 蛋白於不同表現載體系統之蛋白表現 36

第二部分:AlgR 轉錄調控之探討

一、尋找 X. campestris中可能受AlgR所調控之標的基因 39
二、標的基因上游啟動子區域之選殖與β-galactosidase 活性分析 40
三、algR突變株之PilA1表現量 54

第三部分:X. campestris 雙組件訊號傳遞系統之探討 56

伍、 表 63

一、本試驗中所使用之菌種與噬菌體 63
二、本試驗中所使用與構築之質體 66
三、本試驗中所使用之引子與選殖區域 68
四、基因序列特性分析 69
五、菌株性狀分析 70
六、Pseudomonas之 AlgR binding site 71
七、生物資訊方法建構之alignment matrix 72
八、每個核苷酸出現機率相對應之積分 73
九、受AlgR調控之可能標的基因與其DNA結合相關位置 74
十、X. campestris 可能受AlgR調控之標的基因啟動子區域預測 75
十一、X. campestris AlgR蛋白與其他菌種比對結果 76
十二、X. campestris 之雙組件系統 77
十三、X. campestris 訊號傳遞 domain 78
十四、X. campestris 訊號傳遞蛋白 81
十五、X. campestris 之雙組件系統 85
十六、相關網站 87

陸、 圖 88

一、algR 基因突變株載體構築流程圖 88
二、algZ 基因突變株載體構築流程圖 89
三、algR 基因互補株構築流程圖 90
四、不同菌株於 LB 培養基中之生長曲線圖 91
五、不同菌株於 XOLN 培養基中之生長曲線圖 92
六、胞外酵素澱粉酶 (amylase) 之定性分析 93
七、胞外酵素纖維素酶 (cellulase) 之定性分析 94
八、P20H 突變株及互補株之 swarming motility assay 95
九、溶菌斑測試 (spot test) 96
十、pETalgR 蛋白表現載體構築流程圖 97
十一、AlgR protein 於 BL21 (DE3) 誘導表現之SDS-PAGE 電泳分析圖 98
十二、Pseudomonas AlgR 蛋白調控胞外多醣 (EPS) 生合成路徑圖 99
十三、Pseudomonas AlgR 蛋白結合之 DNA 多序列排比 100
十四、fabA-lacZ transcriptional fusion construct 構築流程圖 101
十五、fabA-lacZ transcriptional fusion construct pFYfabA 之於不同轉殖株之啟動子活性分析 102
十六、gltD-lacZ transcriptional fusion construct 構築流程圖 103
十七、gltD-lacZ transcriptional fusion construct pFYgltD 之於不同轉殖株之啟動子活性分析 104
十八、plcN-lacZ transcriptional fusion construct 構築流程圖 105
十九、plcN-lacZ transcriptional fusion construct pFYplcN 之於不同轉殖株之啟動子活性分析 106
二十、phoR-lacZ transcriptional fusion construct 構築流程圖 107
二十一、phoR-lacZ transcriptional fusion construct pFYphoR 之於不同轉殖株之啟動子活性分析 108
二十二、slp-lacZ transcriptional fusion construct 構築流程圖 109
二十三、slp-lacZ transcriptional fusion construct pFYslp 之於不同轉殖株之啟動子活性分析 110
二十四、pilA1-lacZ transcriptional fusion construct 構築流程圖 111
二十五、pilA1-lacZ transcriptional fusion construct pFYpilA1之於不同轉殖株之啟動子活性分析 112
二十六、lacZ transcriptional fusion constructs 於不同轉殖株之啟動子活性分析比較 113
二十七、X. campestris 第四型纖毛合成相關基因 114
二十八、AlgR 對 pilA1 基因兩種可能之轉錄調控方式 115
二十九、AlgR 於不同基因可能之轉錄調控方式 116
三十、P20H strain 細胞內 PilA1 蛋白表現量之 Western blot 分析 117
三十一、two-component system 訊號傳遞 118

柒、 參考文獻 121
柒、參考文獻

Alon U, Camarena L, Surette M, Aguera Y, Arcas B, Liu Y, Leibler S, and Stock JB (1998) Response regulator output in bacterial chemotaxis. EMBO J. 17: 4238-4248.

Bijlsma JJ and Groisman EA (2003) Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol. 11(8):359-66.

Blat Y, Gillespie B, Bren A, Dahlquist FW and Eisenbach M (1998) Regulation of phosphatase activity in bacterial chemotaxis. J Mol Biol. 284(4):1191-9.

Bourret RB and Stock AM (2002) Molecular information processing: lessons from bacterial chemotaxis. J Biol Chem. 277(12):9625-8.

Bourret RB, Charon NW, Stock AM and West AH (2002) Bright lights, abundant operons – fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction. J Bacteriol.184:1–17.

Brinkman FS, Macfarlane EL, Warrener P and Hancock RE (2001) Evolutionary relationships among virulence-associated histidine kinases. Infect Immun. 69(8):5207-11.

Chervitz SA and Falke JJ (1996) Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc Natl Acad Sci USA. 93(6):2545-50.

Crooks GE, Hon G, Chandonia JM and Brenner SE (2004) WebLogo: A sequence logo generator, Genome Research. 14:1188-1190

de Lorenzo V, M Herrero, U Jakubzik and KN Timmis (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172:6568-6572

Deretic V, Gill JF and Chakrabarty AM (1987) Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res 15:4567–4581

Devries CA and Ohman DE (1994) Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol. 176(21):6677-87

Donvito B, Etienne J, Denoroy L, Greenland T, Benito Y and Vandenesch F (1997) Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect. Immun. 65:95–100

Dow JM, Feng JX, Barber CE, Tang JL and Daniels MJ (2000) Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology 146:885–891

Dutta R, Qin L and Inouye M (1999) Histidine kinases: diversity of domain organization. Mol Microbiol. 34(4):633-40

Galperin MY, Gaidenko TA, Mulkidjanian AY, Nakano M and Price CW (2001) MHYT, a new integral membrane sensor domain. FEMS Microbiol. Lett. 205:17–23

Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, Simon I, Hua S, deFays K, Lambert C, Nakai K and Brinkman FS (2003) PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res. 31(13):3613-7.

Grebe TW and Stock JB (1999) The histidine protein kinase superfamily. Adv. Microb. Physiol. 41:139–227

Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek M.R, Tolker-Nielsen T, Givskov M and Molin, S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology 68(4):2008-2017.

Hornef MW, Wick MJ, Rhen M and Normark S (2002) Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol. 3(11):1033-40.

Jin Q, Thilmony R, Zwiesler-Vollick J and He SY (2003) Type III protein secretion in Pseudomonas syringae. Microbes Infect. 5(4):301-10.

Keizer DW, Slupsky CM, Kalisiak M, Campbell AP, Crump MP, Sastry PA, Hazes B, Irvin RT and Sykes BD (2001) Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J Biol Chem. 276(26):24186-93.

Lee MC, Weng SF, Tseng YH (2003) Flagellin gene fliC of Xanthomonas campestris is upregulated by transcription factor Clp. Biochem Biophys Res Commun 307(3):647-52

Li YH, Lau PC, Tang N, Svensater G, Ellen RP and Cvitkovitch DG (2002) Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol. 184(22):6333-42.

Ma S, Wozniak DJ and Ohman DE (1997) Identification of the Histidine Protein Kinase KinB in Pseudomonas aeruginosa and Its Phosphorylation of the Alginate Regulator AlgB. J Biol Chem. 272(29):17952-60

Ma S, DJ Wozniak and DE Ohman (1997) Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator AlgB. J Biol Chem. 272:17952-17960.

Marchler-Bauer A and Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32:W327-331.

Martin DW, Schurr MJ, Yu H and Deretic V (1994) Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J Bacteriol. 176(21):6688-96.

Martin DW, Schurr MJ, Yu H, Deretic V (1994) Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J Bacteriol. 176(21):6688-96.

McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol. 55:49-75.

McGowan S, Lucet IS, Cheung JK, Awad MM, Whisstock JC and Rood JI (2002) The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J Mol Biol. 322(5):997-1011

Mecsas JJ and Strauss EJ (1996 ) Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. Emerg Infect Dis. 2(4):270-88.

Mizuno,T (1997) Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 4:161–168

Mohr CD, Hibler NS and Deretic V (1991) AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. J. Bacteriol 173:5136–5143.

Mohr CD, Leveau JH, Krieg DP, Hibler NS and Deretic V (1992) AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J. Bacteriol 174:6624–6633
Nishioka Y, Demerec M, Eisenstark A (1967) Genetic analysis of aromatic mutants of Salmonella typhimurium. Genetics 56(2):341-51.

Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H and Mizuno T (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol. 46(1):281-91.

Parkinson J S (1993) Signal transduction schemes of bacteria. Cell 73:857-871

Parkinson JS (2003) Bacterial chemotaxis: a new player in response regulator dephosphorylation. J. Bacteriol. 185:1492-1494

Pieter Monsieurs, Kathleen Marchal, Gert Thijs, Sigrid De Keersmaecker, Jos Vanderleyden and Bart De Moor (2003) Characterization of the PhoPQ-regulon by in silico motif detection. ECCB-2003 posters.

Ralf Emmerich, Philipp Strehler, Hauke Hennecke and Hans-Martin Fischer (2000) An imperfect inverted repeat is critical for DNA binding of the response regulator RegR of Bradyrhizobium japonicum. Nucleic Acids Research. 28(21): 4166-4171

Rodrigue A, Quentin Y, Lazdunski A, Mejean V and Foglino M (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8(11):498-504.

Roychoudhury S, Zielinski NA, Ninfa AJ, Allen NE, Jungheim LN, Nicas TI and Chakrabarty AM. (1993) Inhibitors of two-component signal transduction systems: Inhibition of alginate gene activation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 90:965-969.

Sambrook J, EF Fritsch and T Maniatis (1989) Molecular cloning: a laboratory manual, 3nd ed. Cold Spring Harbor Press, Cold Spring Harbor, N. Y.

Schneider TD and Stephens RM (1990) Sequence Logos: A New Way to Display Consensus Sequences. Nucleic Acids Res. 18:6097-6100

Shingler V (2003) Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol. 5 (12) :1226-41

Simon R, U Priefer and A Puhler (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio Technology 1:784-791

Spiro PA, Parkinson JS and Othmer HG (1997) A model of excitation and adaptation in bacterial chemotaxis. Proc Natl Acad Sci U S A. 94 (14):7263-8.

Stock AM, Robinson VL and Goudreau PN (2000) Two-component signal transduction. Annu. Rev. Biochem. 69:183–215

Su MJ, MC Lai, SF Weng and YH Tseng (1990) Characterization of phage L7 and transfection of Xanthomonas camperstris pv. campestris by the phage DNA. Bot. Bull. Acad. Sin. 31:197-203

Taylor BL and Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential and light. Microbiol. Mol. Biol. Rev. 63:479–506

Throup JP, Koretke KK, Bryant AP, Ingraham KA, Chalker AF, Ge Y, Marra A, Wallis NG, Brown JR, Holmes DJ, Rosenberg M and Burnham MK (2000) A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol. 35(3):566-76.

Tseng YH, MC Lo, KC Lin, CC Pan and RY Chang (1990) Characterization of filamentous bacteriophage Lf from Xanthomonas campestris pv. campestris. J. Gen. Virol. 71:1881-1884.

Tze-Wei Huang, Po-Shun Yu, Hsun-Chang Chang and Yaw-Ling Lin (2003) The Compositive Analysis of Two-component Regulatory Systems in Bacterial Genome. National Computer Symposium (NCS'2003):D1-4,BI-019.

Verhamme DT, Arents JC, Postma PW, Crielaard W and Hellingwerf KJ (2002) Investigation of in vivo cross-talk between key two-component systems of Escherichia coli. Microbiology. 148 (1):69-78.

West AH and Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26:369–376

Whitchurch CB, Leech AJ, Young MD, Kennedy D, Sargent JL, Bertrand JJ, Semmler AB, Mellick AS, Martin PR, Alm RA, Hobbs M, Beatson SA, Huang B, Nguyen L, Commolli JC, Engel JN, Darzins A and Mattick JS (2004) Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol Microbiol. 52(3):873-93.

Wosten MM (1998) Eubacterial sigma-factors. FEMS Microbiol 22(3):127-50.

Wozniak DJ and Ohman DE (1991) Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol. 173(4):1406-13.

Yang BY, HF Tsai and YH Tseng (1988) Broad host range cosmid pLAFR1 and non-mucoid mutant XCP20 provide a suitable vector-host system for cloning genes in Xanthomonas campestris pv. campestris. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 21:40-49

Zielinski NA, Chakrabarty A and Berry A (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem 266:9754–9763

Zielinski NA, Maharaj R, Roychoudhury S, Danganan CE, Hendrickson W and Chakrabarty AM (1992) Alginate synthesis in Pseudomonas aeruginosa: environmental regulation of the algC promoter. J Bacteriol 174:7680–7688
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top