跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/04 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃意雅
研究生(外文):Yi-Yia Huang
論文名稱:探討microRNAs與exonskipping事件之關聯
論文名稱(外文):Exploring association between microRNAs and exon skipping events
指導教授:許芳榮許芳榮引用關係王玲玲王玲玲引用關係
指導教授(外文):Fang-Rong HsuLing-Ling Wang
學位類別:碩士
校院名稱:亞洲大學
系所名稱:生物資訊研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:46
外文關鍵詞:microRNAexon skipping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
microRNAs(miRNAs)是內源性短片斷的RNA,長度一般約為17-25個鹼基,在功能上卻具有影響基因表現的能力。目前人類在miRNA的資料庫(miRNA registry)約有三百多條被註冊。miRNAs 最明顯的特徵是由具有髮夾結構的pre-miRNAs演變而來,之後由Dicer這個切割酶將它切成雙股的RNA,其中一股隨之與其他的蛋白質結合形成一個引導沉默複合體(RISC),這個複合體再與其互補的mRNA結合,若結合的程度是完全互補,則mRNA結構被切斷,此情形多發生於植物,若結合程度是部分互補,則mRNA被抑制轉譯,此情形多發生於動物。此次研究主要是探討miRNAs與exon skipping事件的關係,因為選擇性裁剪會造成不同的form,因而假設不同的form也影響了與miRNAs的結合,繼而研究兩種form與miRNAs結合的差異處,從這些差異區域處探討是否具有組織及癌性專一性,也判斷是否也有特定的miRNA結合於此處。
研究方法的資料來源為NCBI人類染色體序列資料、miRNA registry之人類miRNAs序列及AVATAR exon skipping資料。本研究採用John, B. et al.開發之miRanda軟體,分別尋找miRNAs與exon skipping事件兩種form結合之區域,我們稱中間之alternative exon未被裁剪之form為 form1,被裁剪之form為 form2,接著將每一個exon skipping事件中miRNAs只會結合於其中一種form之區域過濾出來,即miRNAs只會結合於form1或只會結合於form2,最後利用費雪精確檢驗法(Fisher's exact test)檢驗這些具有miRNAs form1或form2專一性之區域在某組織中是否與癌症相關,結果找出form1有37處在胃、肝、皮膚、腦、胎盤、胰臟及乳腺,form2有5處在皮膚、腦、胎盤及胰臟與癌症相關,最後亦將所有具有form1或form2專一性之資料分別予以分析統計,如位於那條染色體,位於那個基因及與miRNAs結合處是位於基因的3'未轉譯區、5'未轉譯區或編碼區,並將找到的基因使用基因本體論(Gene Ontology)做功能上的分析。
由於form1之序列長度較長於form2,因此我們認為form1與miRNAs結合之機率亦較高,而此研究之結果亦是如此。因為miRNAs會抑制基因之轉譯,因此我們也認為miRNAs 對form1之影響程度可能也較大。當然這些結果仍需實驗佐以證明,所以我們也將結果開發查詢網站,提供研究人員一個查詢資料的選擇。
MicroRNAs (miRNAs) are a new class of small, endogenous, non-coding RNAs. These single-stranded RNAs of ~17-25 nucleotides that regulate gene expression. Current now about 300 novel miRNAs were identified in miRNA registry. MiRNA most obvious characteristic is a hairpin structure(pre-miRNA), the mature pre-miRNAs are exported to the cytoplasm for further processing. In the cytoplasm, Dicer cleaves the pre-miRNA and produces double-stranded RNA. One of the unwound strands (mature miRNA) is subsequently incorporated into ribonucleoprotein complex, RNA-induced silencing complex (RISC) and binds target mRNA. In plants, miRNAs have perfect complementarity to their targets and cleave them, In animals, miRNAs bind mRNA with partial complementarity in the 3′ UTR of their targets and repress translation. This research explores association between miRNAs and exon skipping events, Because alternative splicing results in two isoforms, we hypothesize different forms may influence miRNAs binding, and try to find relationship between miRNAs and exon skipping events. According to the miRNAs bind with alternative splicing sites, may be found that miRNAs are expressed higher in some tissues and tumors.
Data source from this research are NCBI chromosome data、miRNA registry human miRNAs and AVATAR exon skipping data. This research applys miRanda software developed by John, B. et al., try to find two forms binding sites of exon skipping events. We name the alternative exon not be spliced form form1 and be spliced form form2, and filter the binding sites of miRNAs bind only form1 or form2 with every exon skipping event. The filtered binding sites are tested if each site is related with tissue or tumor specific or not by Fisher’s exact test. There are 37 sites in form1 associated with cancer, for example gastric carcinoma, hepatoma, melanoma, brain tumor, mastocarcinoma, pancreatic carcinoma, placenta carcinoma, and 5 sites in form2 involved brain tumor, melanoma, pancreatic carcinoma, placenta carcinoma. Finally, we also summarize and analyze the results, for example finding the target genes and binding site position(3′ UTR or 5′ UTR or coding regions) and functional analysis with Gene Ontology.
Because the length of form1 is larger than form2, so form1 binding probability is much higher than form2, and miRNAs can repress gene translation, so we think influence degree of form1 may be higher than form2, but the results will need be verified with experiment in the future. The results developed with a query tool for researchers to search interesting data.
Chapter 1 Introduction 1
1.1 microRNAs play an important role of gene regulation 1
1.2 Research background 2
1.3 Research purpose 3
Chapter 2 Related work 4
2.1 Methods of miRNAs target prediction 4
2.2 Association between miRNAs and human diseases 8
2.2.1 miRNAs related with cell growth, differentiation and disease 8 2.2.2 miRNAs associated with cancer 9
2.3 Tissue specific of miRNAs and miRNAs profiles 12
Chapter 3 Materials and methods 14
3.1 Data Source 14
3.2 Methods 15
3.3 Query tool 23
Chapter 4 Results and discussion 27
4.1 Degree of miRNAs influence 27
4.2 Tissue and Tissue-Tumor specific 28
4.3 miRNAs and target genes 30
Chapter 5 Conclusion and future work 37
5.1 Conclusion 37
5.2 Future work 37
Acknowledgements 39
Reference 40
1.Griffiths-Jones Sam. The microRNA Registry. Nucleic Acids Research 2004, Vol. 32, Database issue D109–D111.
2.Rosalind C. Lee, Rhonda L. Feinbaum, Victor Ambros. The C. elegans heterochronic gene line-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75: 843–854.
3.Peter Nelson, Marianthi Kiriakidou1, Anup Sharma, Elsa Maniataki, Zissimos Mourelatos. The microRNA world: small is mighty. Trends Biochem. Sci. 2003, Vol. 28, 534–540.
4.Elsebet Lund, Stephan Guttinger, Angelo Calado, James E. Dahlberg, Ulrike Kutay. Nuclear export of microRNA precursors. Science 2004, 303: 95–98.
5.Rui Yi, Yi Qin, Ian G. Macara, Bryan R. Cullen. . Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003, 17: 3011–3016.
6.Anastasia Khvorova, Angela Reynolds, Sumedha D, Jayasena. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003, 115: 209–216.
7.Gyorgy Hutvagner, Philip D. Zamore. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 197:2056–2060.
8.Javier Martinez, Agnieszka Patkaniowska, Henning Urlaub, Reinhard Lu hrmann, Thomas Tuschl. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002, 110:563–574.
9.Jin-Blao Ma, Keqiong Ye, Dinshaw J. Patel. Structure basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 2004, Vol. 429.
10.Sungroh Yoon, Giovanni De Micheli. Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics 2005, Vol. 21, page i93–i100.
11.James R.Brown, Philippe Sanseau. A computational view of microRNAs and their targets. Drug Discovery Today 2005, Vol. 10, Issue 8.
12.Fang Rong Hsu, Chia Yang Cheng, "Discovery of Tumor-Specific Alternative Splicing Sites," Proceedings of the 8th Annual International Conference on Research in Computational Molecular Biology (RECOMB2004), pp. 71–72.
13.Benjamin P. Lewis, I-hung Shih, Matthew W. Jones-Rhoades, David P. Bartel, Christopher B. Burge. Prediction of mammalian microRNA targets. Cell 2003, 115, 787–798.
14.Marianthi Kiriakidou, Peter T. Nelson, Andrei Kouranov, Petko Fitziev, Costas Bouyioukos, Zissimos Mourelatos, Artemis Hatzigeorgiou. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 2004, 1165–1178.
15.Bino John, Anton J. Enright, Alexei Aravin, Thomas Tuschl, Chris Sander, Debora S. Marks. Human microRNA targets. PLoS Biology 2004, Vol. 2, e363.
16.http://www.microrna.org/mammalian/index.html
17.Dartmouth Medical School, Department of Genetics, Hanover, New Hampshire 03755, USA. The functions of animal microRNAs. Nature 2004, 431, 350–355.
18.Benjamin P. Lewis, Christopher B. Burge, David P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20.
19.Dartmouth Medical School, Department of Genetics, Hanover, New Hampshire 03755, USA. Control of developmental timing in caenorhabditis elegans. Current Opinion in Genetics & Development 2000, 10:428–433.
20.Yong Sun Lee, Hak Kyun Kim, Sangmi Chung, Kwang-Soo Kim, Anindya Dutta. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem. 2005, 280,16635–16641.
21.Junichi Takamizawa, Hiroyuki Konishi, Kiyoshi Yanagisawa, Shuta Tomida, Hirotaka Osada, Hideki Endoh, Tomoko Harano, Yasushi Yatabe, Masato Nagino, Yuji Nimura, Tetsuya Mitsudomi, Takashi Takahashi. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64, 3753–3756.
22.Peizhang Xu, Stephanie Y. Veernooy, Ming Guo, Bruce A, Hay. The Drosophila microRNA miR-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 2003, 13, 790–795.
23.Daivd R. Hipfner, Katrin Weigmann, Stephen M. Cohen. The bantam gene regulates Drosophila growth. Genetics 2002, 161, 1527–1537.
24.Chang-Zheng Chen, Ling Li, Harvey F. Lodish. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86.
25.Mathew N. Poy, Lena Eliasson, Jan Krutzfeldt, Satoru Kuwajima, Xiaosong Ma, Patrick E. MacDonald, Sébastien Pfeffer, Thomas Tuschl, Nikolaus Rajewsky, Patrik Rorsman and Markus Stoffel. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432, 226–230.
26.Christine Esau, Xiaolin Kang, Eigen Peralta, Elaine Hanson, Eric G. Marcusson, Lingamanaidu V. Ravichandran, Yingqing Sun, Seongjoon Koo, Ranjan J. Perera, Ravi Jain, Nicholas M. Dean, Susan M. Freier, C. Frank Bennett, Bridget Lollo, and Richard Griffey. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 2004, 279, 52361–52365.
27.Eran Hornstein, Jennifer H. Mansfield, Soraya Yekta, Jimmy Kuang-Hsien Hu, Brian D. Harfe, Michael T. McManus, Scott Baskerville, David P. Bartel and Clifford J. Tabin. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005, 438, 671–674.
28.Yong Zhao, Eva Samal, Deepak Srivastava. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005, 436, 214–220.
29.Mi-Ra Suh, Yoontae Lee, Jung Yeon Kim, Soo-Kyoung Kim, Sung-Hwan Moon,Ji Yeon Lee, Kwang-Yul Cha, Hyung Min Chung, Hyun Soo Yoon, Shin Yong Moon,V. Narry Kim, Kye-Seong Kim. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 2004, 270, 488–498.
30.Anna M. Krichevsky, Kevin S. King, Christine P. Donahue, Konstantin Khrapko,Kenneth S. Kosik. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003, 9, 1274–1281.
31.John Kim, Anna Krichevsky, Yonatan Grad, Gabriel D. Hayes, Kenneth S. Kosik, George M. Church, Gary Ruvkun. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. 2004, 101, 360–365.
32.George Adrian Calin, Cinzia Sevignani, Calin Dan Dumitru, Terry Hyslop, Evan Noch, Sai Yendamuri, Masayoshi Shimizu, Sashi Rattan, Florencia Bullrich, Massimo Negrini, and Carlo M. Croce. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. 2003, 101, 2999–3004.
33.George Adrian Calin, Calin Dan Dumitru, Masayoshi Shimizu, Roberta Bichi, Simona Zupo, Evan Noch, Hansjuerg Aldler, Sashi Rattan, Michael Keating, Kanti Rai, Laura Rassenti, Thomas Kipps, Massimo Negrini, Florencia Bullrich, and Carlo M. Croce. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. 2002, 99, 15524–15529.
34.Lin He, J. Michael Thomson, Michael T. Hemann, Eva Hernando-Monge, David Mu, Summer Goodson,Scott Powers, Carlos Cordon-Cardo, Scott W. Lowe, Gregory J. Hannon & Scott M. Hammond. A microRNA polycistron as a potential human oncogene. Nature 2005, 435, 828–833.
35.Michael Z. Michael, Susan M.O’ Connor, Nicholas G. van Holst Pellekaan, Graeme P. Young, Robert J. James. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003, Vol. 1, 882–891.
36.Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004, 39: 167–169.
37.Chang-Gong Liu, George Adrian Calin, Brian Meloon, Nir Gamliel, Cinzia Sevignani, Manuela Ferracin,Calin Dan Dumitru, Masayoshi Shimizu, Simona Zupo, Mariella Dono, Hansjuerg Alder, Florencia Bullrich,Massimo Negrini, and Carlo M. Croce. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. 2004, 101, 9740–9744.
38.Jun Lu, Gad Getz, Eric A. Miska, Ezequiel Alvarez-Saavedra, Justin Lamb, David Peck, Alejandro Sweet-Cordero, Benjamin L. Ebert, Raymond H. Mak, Adolfo A. Ferrando, James R. Downing, Tyler Jacks, H. Robert Horvitz & Todd R. Golub. MicroRNA expression profiles classify human cancers. Nature 2005, Vol. 435 doi:10.1038.
39.Angie M. Cheng, Mike W. Byrom, Jeffrey Shelton, Lance P. Ford. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005, 33, 1290–1297.
40.Fang Rong Hsu, Ying Tsong Chen, Hwan-You Chang, Yaw-Lin Lin, Yin-Te Tsai, Hui-Ling Peng, Min Yao Shih, Chia-Hung Liu, and Jer Feng Chen. AVATAR: A database for genome-wide alternative splicing event detection using large scale ESTs and mRNAs. Bioinformation 2005, Vol.1 No.1, pp. 16-18.
41.Yi Xing, and Christopher Lee. Evidence of functional selection pressure for alternative splicing events that accelerate evolution of protein subsequences. PNAS 2005, Vol. 102 no. 38, 13526–13531.
42.Omer Barad, Eti Meiri, Amir Avniel, Ranit Aharonov, Adi Barzilai, Isaac Bentwich, Uri Einav, Shlomit Gilad,Patrick Hurban, Yael Karov, Edward K. Lobenhofer, Eilon Sharon, Yoel M. Shiboleth, Marat Shtutman, Zvi, Bentwich and Paz Einat. MicroRNA expression detected by oligonucleotide microarrays:System establishment and expression profiling in human tissues. Genome Res, 2004, 14: 2486–2494.
43.Stefano Volinia, George A. Calin, Chang-Gong Liu, Stefan Ambs, Amelia Cimmino, Fabio Petrocca,Rosa Visone, Marilena Iorio, Claudia Roldo, Manuela Ferracin, Robyn L. Prueitt, Nozumu Yanaihara,Giovanni Lanza, Aldo Scarpa, Andrea Vecchione, Massimo Negrini, Curtis C. Harris, and Carlo M. Croce. A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS, 2006, Vol. 103, 2257–2261.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文