|
[1]Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81 (Pt 4): 853-79, 2000. [2]Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300 (5624): 1394-9, 2003. [3]Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348 (20): 1967-76, 2003. [4]http://www.fda.gov/fdac/features/2003/403_sars.html [5]http://www.ds-shanghai.org.cn/Uebersicht/Gesundheit.html [6]Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB, Chen LL, Li GW, Sun T, Yu CY, Yue LD, Duan WH, Shen JK, Qin L, Shi TL, Li YX, Chen KX, Luo XM, Shen X, Shen JH, Jiang HL. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening. Acta Pharmacol Sin 24 (6): 497-504, 2003. [7]Qin L, Xiong B, Luo C, Guo ZM, Hao P, Su J, Nan P, Feng Y, Shi YX, Yu XJ, Luo XM, Chen KX, Shen X, Shen JH, Zou JP, Zhao GP, Shi TL, He WZ, Zhong Y, Jiang HL, Li YX. Identification of probable genomic packaging signal sequence from SARS-CoV genome by bioinformatics analysis. Acta Pharmacol Sin 24 (6): 489-96, 2003. [8]Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81 (Pt 4): 853-79, 2000. [9]Hegyi A, Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83 (Pt 3): 595-9, 2002. [10]Hegyi A, Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83 (Pt 3): 595-9, 2002. [11]Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81 (Pt 4): 853-79, 2000. [12]Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 74 (5): 2333-42, 2000. [13]Hegyi A, Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83 (Pt 3): 595-9, 2002. [14]Ziebuhr J, Siddell SG. Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73 (1): 177-85, 1999. [15]Bonilla PJ, Hughes SA, Weiss SR. Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 71 (2): 900-9, 1997. [16]Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81 (Pt 4): 853-79, 2000. [17]Hegyi A, Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83 (Pt 3): 595-9, 2002. [18]Holmes KV. SARS coronavirus: a new challenge for prevention and therapy. J Clin Invest 111 (11): 1605-9, 2003. [19]Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348 (20): 1953-66, 2003. [20]Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300 (5624): 1394-9, 2003. [21]Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB, Chen LL, Li GW, Sun T, Yu CY, Yue LD, Duan WH, Shen JK, Qin L, Shi TL, Li YX, Chen KX, Luo XM, Shen X, Shen JH, Jiang HL. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening. Acta Pharmacol Sin 24 (6): 497-504, 2003. [22]Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. Embo J 21 (13): 3213-24, 2002. [23]Hegyi A, Friebe A, Gorbalenya AE, Ziebuhr J. Mutational analysis of the active centre of coronavirus 3C-like proteases. J Gen Virol 83 (Pt 3): 581-93, 2002. [24]Yan L, Velikanov M, Flook P, Zheng W, Szalma S, Kahn S. Assessment of putative protein targets derived from the SARS genome. FEBS Lett 554 (3): 257-63, 2003. [25]Ziebuhr J, Siddell SG. Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73 (1): 177-85, 1999. [26]Ziebuhr J, Heusipp G, Siddell SG. Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. J Virol 71 (5): 3992-7, 1997. [27]Ziebuhr J, Herold J, Siddell SG. Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol 69 (7): 4331-8, 1995. [28]Herold J, Gorbalenya AE, Thiel V, Schelle B, Siddell SG. Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72 (2): 910-8, 1998. [29]Zhang XW, Yap YL. Old drugs as lead compounds for a new diseases Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg Med Chem 12 (10): 2517-21, 2004. [30]Veselovsky AV, Medvedev AE, Tikhonova OV, Skvortsov VS, Ivanov AS. Modeling of substrate-binding region of the active site of monoamine oxidase A. Biochemistry (Mosc) 65 (8): 910-6, 2000. [31]Yu XJ, Luo C, Lin JC, Hao P, He YY, Guo ZM, Qin L, Su J, Liu BS, Huang Y, Nan P, Li CS, Xiong B, Luo XM, Zhao GP, Pei G, Chen KX, Shen X, Shen JH, Zou JP, He WZ, Shi TL, Zhong Y, Jiang HL, Li YX. Putative hAPN receptor binding sites in SARS_CoV spike protein. Acta Pharmacol Sin 24 (6): 481-8, 2003. [32]Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348 (20): 1953-66, 2003. [33]World Health Organisation, Cumulative Number of Reported Probable Cases of SARS , http://www.who.int/csr/sars/country/en/; (b) Centre for Disease Control and Prevention, Severe Acute Respiratory Syndrome , http://www.cdc.gov/ncidod/sars/. [34]Bouadma L, Noel V, Schortgen F. Managing SARS. N Engl J Med 349 (7): 707-8; author reply 707-8, 2003. [35]Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB, Chen LL, Li GW, Sun T, Yu CY, Yue LD, Duan WH, Shen JK, Qin L, Shi TL, Li YX, Chen KX, Luo XM, Shen X, Shen JH, Jiang HL. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening. Acta Pharmacol Sin 24 (6): 497-504, 2003. [36]RCSB PDBhttp://www.rcsb.org/ [37]Enhanced NCI Database Browser Release 2 http://cactus.nci.nih.gov/ncidb2/ [38]Patick AK, Binford SL, Brothers MA, Jackson RL, Ford CE, Diem MD, Maldonado F, Dragovich PS, Zhou R, Prins TJ, Fuhrman SA, Meador JW, Zalman LS, Matthews DA, Worland ST. In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 43 (10): 2444-50, 1999. [39]Yan L, Velikanov M, Flook P, Zheng W, Szalma S, Kahn S. Assessment of putative protein targets derived from the SARS genome. FEBS Lett 554 (3): 257-63, 2003. [40]Shu-Sin Chng, Truong-Giang Hoang, Wei-Woon Wayne Lee, Mun-Pun Tham,Hui Yvonne Ling and Teck-Peng Loh. Synthetic studies towards anti-SARS agents: application ofan indium-mediated allylation of a-aminoaldehydes as the key. Tetrahedron Letters 45: 9501–9504, 2004. [41]Zalman LS, Brothers MA, Dragovich PS, Zhou R, Prins TJ, Worland ST, Patick AK. Inhibition of human rhinovirus-induced cytokine production by AG7088, a human rhinovirus 3C protease inhibitor. Antimicrob Agents Chemother 44 (5): 1236-41, 2000. [42]Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CL_pro) structure: basis for design of anti-SARS drugs. Science 300 (5626): 1763-7, 2003. [43]Chou KC, Wei DQ, Zhong WZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun 308 (1): 148-51, 2003. [44]Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB, Chen LL, Li GW, Sun T, Yu CY, Yue LD, Duan WH, Shen JK, Qin L, Shi TL, Li YX, Chen KX, Luo XM, Shen X, Shen JH, Jiang HL. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening. Acta Pharmacol Sin 24 (6): 497-504, 2003. [45]Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, Liu CY, Huang HW, Chen SC, Hong CF, Lin RK, Chao YS, Hsu JT. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother 48 (7): 2693-6, 2004. [46]Zhang XW, Yap YL. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg Med Chem 12 (10): 2517-21, 2004. [47]The Dundee PRODRG2 Server http://davapc1.bioch.dundee.ac.uk/programs/prodrg/ [48]Autodock 3.0 (Scripps) http://www.scripps.edu/mb/olson/doc/autodock/index.html [49]Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK. Olson AJ. Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. Computational Chemistry J 19: 1639-1662, 1998. [50]Autodocktools (Scripps) http://www.scripps.edu/mb/olson/doc/autodock/tools.html [51]Pymol http://pymol.sourceforge.net/ [52]Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267 (3): 727-48, 1997. [53]Man, K. F., et. al., Genetic Algorithms, Springer-Verlag, London1999
|