跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 21:37
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:鄭全永
Author (Eng.):Cheng Chun Yung
Title:以貝氏網路為基礎之能力指標測驗編製及補救教學動畫製作–以三年級數學領域之「數與量的認識」相關指標為例
Title (Eng.):Competence Indicators Test and Remedial Instruction Developments Based on Bayesian Networks – The “Figures and Quantity” Relates Indicators of Mathematics in Grade 3
Advisor:劉湘川劉湘川 author reflink
degree:Master
Institution:亞洲大學
Department:資訊工程學系碩士班
Narrow Field:工程學門
Detailed Field:電資工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2005
Graduated Academic Year:94
language:Chinese
number of pages:73
keyword (chi):貝氏網路補救教學數與量能力指標指標網路動畫能力數學
keyword (eng):Bayesian Networksremedial instructionfigures and quantitycompetence indicators
Ncl record status:
  • Cited Cited :6
  • HitsHits:227
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:47
  • gshot_favorites title msgFav:4
摘要
本研究結合教授及數學科教師的意見,目的在建立以貝氏網路為基礎的電腦診斷測驗及動畫補救教學系統。提供學生在進行電腦診斷測驗後,能依其錯誤類型,即時進行電腦動畫補救教學。
本系統利用電腦來進行學生錯誤類型的分析,除了讓學生了解自我學習狀況,進而運用程式所提供補救的教學達到自學的效果之外,更希望能讓教師迅速了解學生學習問題所在,改進教學的方式及技巧。不再需要花太多的時間去診斷及進行補救教學,減輕教師的工作負擔,讓教與學都能發揮最大的成效。
本研究達成的成果如下:
一、運用貝氏網路模式,對學生的錯誤類型與能力指標的辨識率有很好的效果。
二、電腦化適性補救教學確可達到補救教學的效果。
關鍵字:貝氏網路、補救教學、數與量、能力指標
Abstract
This paper integrates the opinions of the professors and mathematical teachers, the purpose is setting up a computerized diagnosing test and animated remedial instruction system, providing the student after computerized diagnosing test, according to the analysis of its mistake type, carry on the adaptability, immediately remediable teaching.
In this system, we used the computer to analysis students’ mistake types. We hope to make students understand their own study problems, and then use the remedial instruction of computer procedure to improve their learning. So the system is used to assist teachers and students in evaluating and exploring the students’ learning process and outcomes.
The results are as follows:
1. The results show that using Bayesian networks to diagnose the existence of mistake types and sub-skills in individual students can get good performance.
2. The progress of students are significant after taking the adaptive remedial instruction.
Key words: Bayesian Networks, remedial instruction, figures and quantity, competence indicators.
目錄
摘要 I
Abstract II
目錄 III
表目錄 IV
圖目錄 V
第一章 緒論
第一節 研究動機 1
第二節 研究目的 3
第三節 名詞解釋 4
第四節 論文架構 6
第二章 文獻探討
第一節 證據中心的評量設計 .7
第二節 貝氏網路 11
第三節 貝氏網路在教育上的運用 15
第四節 「數與量的認識」教材分析 17
第五節 電腦補救教學 26
第三章 研究設計與實施
第一節 研究方法 31
第二節 研究流程 34
第三節 研究工具 36
第四節 研究對象 37
第五節 資料收集與分析 38
第四章 研究結果
第一節 應用貝式網路在診斷測驗之成效 39
第二節 電腦化診斷測驗及動畫補救教學結果分析 44
第五章 結論與建議
第一節 結論 55
第二節 建議 56
參考文獻
中文部分 ………………………………………………………………………57
英文部分 ………………………………………………………………………58
附錄一 三年級「數與量認識」前測試題 ………………………………………59
附錄二 三年級「數與量認識」後測試題 ………………………………………62
附錄三 三年級「數與量的認識」各能力指標相關子技能及錯誤類型一覽表 65
附錄四 三年級「數與量認識」相關能力指標貝氏網路架構 …………………67
附錄五 電腦動畫補救教學示例 …………………………………………………68
附錄六 電腦動畫補救教學示例 …………………………………………………71
參考文獻
中文部分
王瑋樺(2001)。國小三年級數學學習障礙學生加法文字題解題歷程與補救教學之研究。國立屏東師範學院數理教育研究所。
白宏圖(2005)。以能力指標結構為基礎的電腦適性測驗編製及動畫補救教學之應用-以國小數學領域三年級數與量的認識為例。臺中健康暨管理學院訊工程學系研究所碩士論文。
竹興數學加油站(2000)。教材庫-常見錯誤。http://content.edu.tw/primary/math/ml_cs/con2/con2.htm。
林子幼(2002)。國小三年級數學科正整數乘法概念之探究-以試題選項特徵曲線為分析基礎。國立台中師範學院教育測驗統計研究所碩士論文。
林秋榮(2001)。電腦化動態評量對國小三年級學習障礙學生整數四則問題之研究。國立台中師範學院進修暨推廣部國民教育研究所碩士論文。
張永傑(2000)。國小中年級學童「數詞-數字」轉譯的困難:中文命數系統的影響。國立台灣大學心理學研究所碩士論文。
張新仁(2000)。補救教學面面觀。國立高雄師範大學特殊教育中心「義務教育階段補救教學系統研究與實務研討會」
許美華(2000)。國小二年級學童乘法解題策略變化之研究。屏東師範學院國民教育研究所碩士論文。
國家衛生研究院電子報(2005)。健康知識:嚼檳榔 代價沉痛。http://sars.nhri.org.tw/enews/enews_list_new3.php?volume_indx=93&enews_dt=2005-04-07。
黃靖淑(2002)。國小中高年級學生數字感發展概況之探討。國立台南師範學院國民教育研究所碩士論文。
盧淑津(2004)。從表徵觀點探討國小三年級學童的一位小數概念。屏東師範學院數理教育研究所碩士論文。


英文部分
Cowell, R.(1999). Introduction to Inference for Bayesian Networks.In Jordan (1999), 9-26.
Cheng J., Bell D.& Liu, W.(1998). Learning Bayesian Networks from Data: An Efficient Approach Based on Information heory,Technical Report, University of Alberta.
David, H. (1995).A Tutorial on Learning with Bayesian Networks.Technical Report MSR-TR-95-06, Microsoft Research.
Heckerman, D. (1999). A Tutorial on Learning with Bayesian Networks. In Jordan , 301-354.
Pearl, J.(1991). Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference, Morgan Kaufmann, San Francisco,CA.
Russell G., Almond,Linda S., Steinberg & Robert J., Mislevy (2002) Enhancing the Design and Delivery of Assessment Systems:A Four Process Architecture, The Journal of Technology, Learning, and Assessment.
Tsai,Y.(2002).User Model for Personalized Assignment and Learning Environment Based on Bayesian Learning Network. Technical Report, Tamkang University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
1. Competence Indicators Test and Remedial Instruction Developments Based on Bayesian Networks -The ”Quantity and Measurement"Related Indicators of Mathematics in Grade 3
2. Competence Indicators Test and Remedial Instruction Developments Base on The Structures of Bayesian Networks— The "integer" Related Indicators of Mathematicsin Grade 4
3. Competence Indicators Test and Remedial Instruction Developments Based on The Structures of Bayesian Networks-The “algebra ” Related Indicator of Mathematicsin Grade 6Competence Indicators Test and Remedial Instruction Developments Based on The Structur
4. Competence Indicators Test and Remedial Instruction Developments Based on Bayesian Networks-The “Whole Number” Related Indicators of Mathematics in Grade 3
5. Competence Indicators Test And Remedial Instruction Developments Based On The Structures Of Bayesian Networks-The“Fraction And Decimal”Of Mathematics In Grade 6
6. Competence Indicators Test and Remedial Instruction Developments Base on The Structures of Bayesian Networks— The "Quantity and Measurement" Related Indicators of Mathematicsin Grade 4
7. A Study on Impact Factors of Business Value of Biotechnology Industries in Taiwan
8. Competence Indicators Test and Remedial Instruction Developments Base on The Structures of Bayesian Networks— The "Rational Number" Related Indicators of Mathematicsin Grade 4
9. Elementary School Mathematical Computerized Dynamic Assessment Based on The Graduate Prompting Method
10. Competence Indicators Test and Remedial Instruction Developments Based on The Structures of Bayesian Networks ­ The “Geometry” of Mathematicsin Grade 4
11. Competence Indicators Test and Remedial Instruction Developments Based on Bayesian Networks _ The Algebra Statistics and Probability Related Indicators of Mathematics in Grade 5
12. Competence Indicators Test and Remedial Instruction Developments Based on Bayesian Networks- The “Geometry” Related Indicators of Mathematics in Grade 6
13. Competence Indicators Test and Remedial Instruction Developments Based on Bayesian Networks-The Fraction Number Related Indicators of Mathematics in Grade 5
14. Competence Indicators Test and Remedial Instruction Developments Based and Bayesian Networks _ The Decimal Fraction Number Related Indicators of Mathematic in Grade 5
15. Competence Indicators Test and Remedial Instruction Developments Based on Bayesian Networks-The quantity and measurement Related Indicators of Mathematics in Grade 5
 
system icon system icon