參考文獻
[1] 林育仕(2005)。利用基因網路分析變數間之因果關係,碩士論文,國立交通大學統計學研究所。[2] 吳明隆(2006)。SPSS統計應用學習實務:問卷分析與應用統計(三版)。
台北:知城。
[3] 洪新原、梁定澎、張嘉銘(2005)。科技接受模式之彙總研究。資訊管理學報,2(4),211-234。
[4] 邱皓政(2005)。結構方程模式。台北:雙葉。
[5] 黃芳銘(2004)。社會科學統計方法-結構方程模式。台北:五南。
[6] 黃意策(2002)。應用資料採礦技術於貝氏網路架構之研究—線性代數與圖論之結合,碩士論文,東海大學工業工程與經營資訊研究所。[7] 潘俊帆(2002)。以貝氏網路為基礎的個人化差異知識處理機制,碩士論文,東海大學工業工程研究所。[8] 鄭祐昇(2004)。運用資料探勘技術於知識圖之建立,碩士論文,東海大學工業工程與經營資訊研究所。[9] Bollen, K.A. (1989). Structural Equations with Latent Variables. John Wiley and Sons, New York, NY.
[10] Borooah, V. (2002). Logit and Probit: Ordered and Multinomial Models, Sage Publications, Thousand Oaks, CA.
[11] C. Glymour, R. Scheines, P. Spirtes,and K. Kelly.( 1987) Discovering Causal Structure: Artificial Intelligence,Philosophy of Science and Statistical Modeling.Academic Press.
[12] Cooper, G. and E. Herskovits . (1992) . A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347.
[13] Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology. MIS Quarterly, 13, 3, 319-340.
[14] Druzdzel, M. and H. Simon, (1993). Causality in Bayesian Belief Networks. In the Proceedings of the 9th Annual Conference on Uncertainty in Artificial Intelligence, 3-11.
[15] Friedman, N., M. Linial, I. Nachman, D. Peer, (2000) . Using Bayesian networks to analyze expression data. Proceedings of the International Conference on Computational Molecular Biology, 127-135
[16] Heckerman D. ( 1996). A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, Washington. Online: http://citeseer.ist.psu.edu/heckerman95tutorial.html.
[17] Lee, B., A. Barua, and A.B. Whinston. (1997). Discovery and representation of causal relationships in MIS Research: A methodological framework. MIS Quarterly, 21, 1, 109-136.
[18] Mulaik,S.A.,& Jame,L.R.(1995). Objectivity and reasoning in science and structural equation modeling. In:R.H.Hoyle(Ed.),Structural equation modeling :Concepts, issues and application(pp.118-137).Thousand Oaks,CA:Sage.
[19] Pavlou, P.A.(2003). Consumer Acceptance of Electronic Commerce: Integrating
Trust and Risk with the Technology Acceptance Model. International Journal of
Electronic Commerce, 7, 3, 69-103.
[20] Pearl, J. and T. Verma, (1991). A Theory of Inferred Causation. Proceedings of Princliples of Knowledge Presentation and Reasoning, 441-452.
[21] Pearl, J., (1995).Causal Diagrams for Empirical Research. Biometrika, 82, 4, 669-710.
[22] Spirtes, P., C. Glymour, C. and R. Scheines.(2002). Data mining tasks and methods: Probabilistic and casual networks: mining for probabilistic networks, Handbook of data mining and knowledge discovery, Oxford University Press, New York, NY.
[23] Scheines, R., P. Spirtes, C. Glymour, C. Meek, and T. Richardson. (1998). TETRAD Project: Constraint Based Aids to Causal Model Specification. Multivariate Behavioral Research, 33, 1, 119-128.
[24] Silva, R. Scheines, C. Glymour, and P. Spirtes. (2003). Learning measurement models for unobserved variables. Proceedings of 19th Conference on Uncertainty in Artificial Intelligence, pages 543–550.
[25] Spirtes, P., T. Richardson, C. Meek, R. Scheines, and C. Glymour, (1998). Using path diagrams as a structural equation modeling tool. Sociological Methods and Research, 27, 2 , 182-225.
[26] Spohn, W.(2000). Bayesian Nets Are All There IS To Causal Dependence. In M.C. Galavotti (Ed.), Stochastic Dependence and Causality, CSLI Publications, Stanford, CA.
[27] Verma, T. and J. Pearl .(2003). An algorithm for deciding if a set of observed
independencies has a causal explanation, Proceedings of 8th Conference on
Uncertainty in Artificial Intelligence, 323-330.
[28] Zheng E. & P.A. Pavlou. (2005).Structural Equation Modeling with Causal Relationships: A Bayesian Networks Methods for Inferring Causality from Data. under review in Management Science.