參考文獻
[1]吳子逢,何信瑩。使用直交實驗設計的高效率演化策略及其應用,逢甲大學碩士論文,2003。[2]林宏穗,何信瑩。設計一種新型的直交粒子群最佳化演算法,逢甲大學碩士論文,2004。[3]Arabas, J., Mulawka, J. and Pokrasniewicz, J., “A new class of the crossover operators for the numerical optimization,” Proceedings of the 6th International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 42-48, 1995.
[4]Bäck, T., Evolutionary Algorithms in Theory and Practice. New York: Oxford Univ. Press, 1996.
[5]Cantù-Paz, E ., A summary of research on parallel genetic algorithms. IlliGAL Report No. 95007, University of Illinois at Urbana-Champaign, July, 1995.
[6]Carlos Andrés Peña-Reyes, Moshe Sipper, “Evolutionary Computation in Medicine: an overview,” Artificial Intelligence in Medicine, 19, pp. 1-23, 2000.
[7]Colorni, A., Dorigo, M. and Maniezzo, V., “An investigation of some properties of an ant algorithm,” Proceedings of the Parallel Problem Solving from Nature Conference, R. Manner and B. Manderick Eds. Brussels, Belgium: Elsevier, pp.509-520, 1992.
[8]Colorni, A., Dorigo, M. and Maniezzo, V., “Distributed optimization by ant colnies,” Proceedings of the First European Conference Artificial Life, F. Varela and P. Bourgine, Eds. Paris, France: Elsevier, pp.134-142, 1991.
[9]Darrell Whitley, L. and Kauth, J., GENITOR: a different genetic algorithm, Proceedings of the 1988 Rocky Mountain Conference on Artifical Intelligence, 1988.
[10]Darrell Whitley, L. and Starkweather, T., “GENITOR II: a distributed genetic algorithm,” Journal of Experimental and Theoretical Artifical Intelligence 2, pp. 189-214, 1990.
[11]Darrell Whitley, L., The GENITOR algorithm and selective pressure: why rank based allocation of reproductive trials is best, in: J. D. Schaffer (Ed.), Proceedings of the Third International Conference on GAs, Morgan Kaufmann, Los Atlos, CA, pp. 116-121., 1989
[12]Dorigo, M., Bonabeau, E. and Theraulaz, G., “Ant algorithm and stigmergy,” Future Generation Computer Systems, 16, pp. 851-871, 2000.
[13]Dorigo, M., Caro, G.D. and Gambarsella, L.M., “Ant algorithms for discrete optimization,” Artificial Life, 5, pp. 137-172, 1999.
[14]Dorigo, M., Maniezzo, V. and Colorni, A., “Positive feedback as a research strategy,” Technology Report 91-016, Politecnico di Milano, 1991.
[15]Eshelman, L. J. and Schaffer, D., Preventing premature convergence in genetic algorithms by preventing incest, in: L. Booker, R. Belew (Eds.), Proceedings of the Fourth International Conference on GAs, Morgan Kaufmann, Los Atlos, CA, 1991.
[16]Eshelman, L. J. and Schaffer, J. D., Real-coded genetic algorithms and intervalschemata. In Foundations of Genetic Algorithms 2 (FOGA-2), pp.187-202, 1993.
[17]Fogel, L. J., “Autonomous automata,” Ind. Res., vol. 4, pp. 14–19, 1962.
[18]Fogel, L. J., “On the organization of intellect,” Ph.D. dissertation, University of California, Los Angeles, 1964.
[19]Fogel, L. J., Owens, A. J., & Walsh, M. J., Artificial intelligence through simulated evolution. New York: Wiley, 1966.
[20]Geem Z.W., Kim J.-H., Loganathan GV, “A new heuristic optimization algorithm: harmony search,” Simulation 76(2), pp. 60-68, 2001.
[21]Geem Z.W., Kim J.-H., Loganathan GV, “Harmony search optimization: Application to pipe network design,” Int J Modell Simulat 22(2), pp. 125-133, 2002.
[22]Geem Z.W., Lee S.-K., “A new structural optimization method based on the harmony search algorithm,” Computers and Structures 82, 781-798, 2004.
[23]Geem Z.W., Lee S.-K., “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Comput. Methods Appl. Mech. Engrg. 194, pp. 3902-3933, 2005.
[24]Glover F., “Heuristic for integer programming using surrogate constraints,” Decision Sci. 8(1), pp. 156-166, 1977.
[25]Goldberg, D. E., Genetic Algorithms in Search, Optimazation and Machine Learning, Addison-Wesley, Reading, MA, 1989.
[26]Goldberg, D. E., Deb, K. and Korb, B.,Messy genetic algorithms revisited: Nonuniform size and scale. Complex Systems 4(4), pp. 415-444, 1990.
[27]Goldberg, D. E. and Deb, K., A comparison of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms 1 (FOGA-1), pp. 69-93, 1991.
[28]Goldberg, D. E., Korb, B. and Deb, K., Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 3(5), pp. 493-530, 1989.
[29]Ho S.-Y. and Chen J.-H., “A GA-based systematic reasoning approach for solving traveling salesman problems using an orthogonal array crossover,” High Performance Computing in the Asia-Pacific Region, 2000. Proceedings. The Fourth International Conference/Exhibition on, vol.2, no.pp.659-663 vol.2, 2000.
[30]Ho S.-J., Ho S.-Y, and Shu L.-S., “A Novel Orthogonal Simulated Annealing Algorithm for Optimization of Electromagnetic Problems,” IEEE TRANSACTIONS ON MAGNETICS 40(4), 2004.
[31]Ho S.-Y., Ho S.-J., and Lin Y.-K., “An orthogonal simulated annealing for floorplanning problems,” IEEE Trans. VLSI Syst. 12, 2004.
[32]Holland, J. H., “Outline for a logical theory of adaptive systems,” J. Assoc. Comput. Mach., vol. 3, pp. 297–314, 1962.
[33]Holland, J. H., Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. of Michigan Press, 1975.
[34]Holland, J. H. and Reitman, J. S., “Cognitive systems based on adaptive algorithms,” in Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-Roth, Eds. New York: Academic, 1978.
[35]J. Yen, J. C. Liao, B. Lee and D. Randolph, A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method, IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics, 28(2), pp. 173-191, 1998.
[36]Kirkpatrick S., Gelatt C. and Vecchi M., “Optimization by simulated annealing,” Science 220(4598), pp. 671-680, 1983.
[37]Koza, JR., Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STANCS-90-1314, Department of Computer Science, Stanford University, June 1990.
[38]Koza, JR., Genetic Programming. Cambridge, MA: MIT Press, 1992.
[39]Leung Y.-W. and Wang Y., “An orthogonal genetic algorithm with quantization for global numerical optimization,” IEEE Trans. Evol. Comput. 5, pp. 41–53, 2001.
[40]Mitsuo Gen, Runwei Cheng, Genetic Algorithms and Engineering Design, Wiley, New York, 1997.
[41]Pierreval, H., Caux, C., Paris J.L. and Viguier, F., “Evolutionary Approaches to the Design and Organization of Manufacturing Systems,” Computers & Industrial Engineering, 44, pp. 339-364, 2003.
[42]Rechenberg, I., Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart, Germany: Frommann-Holzboog, 1973.
[43]Rechenberg, I., Evolutionstrategie ’94. Frommann-Holzboog, Stuttgart, 1994.
[44]Renders, J.-M. and H. Bersini, “Hybridizing genetic algorithms with hill-climbing methods for global optimization: Two possible ways, ” In Z. Michalewicz, J. D. Scha_er, H.-P. Schwefel, D. B. Fogel, and H. Kitano (Eds.), Proceedings of the First IEEE International Conference on Evolutionary Computation, pp. 312-317, IEEE Press, 1994.
[45]Schwefel, H.-P., Numerical Optimization of Computer Models. Chichester: Wiley, 1981.
[46]Schwefel, H.-P., Evolution and Optimum Seeking. New York: Wiley, 1995 (Sixth-Generation Computer Technology Series).
[47]Schwefel, H.-P., Evolution and Optimum Seeking, Wiley , New York, 1995.
[48]Schwefel, H.-P.,and Rudolph, G., “Contemporary evolution strategies,” in Advances in Artificial Life. 3rd Int. Conf. on Artificial Life (Lecture Notes in Artificial Intelligence, vol. 929), F. Mor´an, A. Moreno, J. J. Merelo, and P. Chac´on, Eds. Berlin, Germany: Springer, pp. 893–907, 1995.
[49]Shu L.-S., Ho S.-Y., and Ho S.-J., “OSA: Orthogonal Simulated Annealing Algorithm and Its Application to Designing Mixed H2/H Optimal Controllers,” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS 34(5), 2004.
[50]Syswerda, G., “Uniform crossover in genetic algorithms,” Proceedings of the 3rd International Conference on Genetic Algorithms, pp.2-9, 1989.
[51]Wang T.-Y., Wu K.-B., A parameter set design procedure for the simulated annealing algorithm under the computational time constraint. Computer & Operations Research (26), pp. 665-678, 1999.
[52]Yao X., Liu Y., “Fast evolution strategies,” in Evolutionary Programming VI, P. J. Angeline, R. Reynolds, J. McDonnell, and R. Eberhart, Eds. Berlin, Germany: Springer-Verlag, pp. 151-161, 1997. (Available at ftp://www.cs.adfa.edu.au/pub/xin/yao_liu_ep97.ps.gz).