參考文獻
中文部分
1.方國富(2000),「多品質特性產品之穩健參數設計」,國立成功大學工業管理科研究所碩士論文。2.王宗富(2001),「多重品質特性製程參數最佳化研究—以高分子有機電激發光顯示器為例」,國立臺灣科技大學工業管理研究所碩士論文。3.王耀南(1996),「智能控制系統-模糊邏輯‧專家系統‧神經網路控制」,湖南大學出版社,長沙。
4.王春和(1993),「田口方法於線外品管多重品質特性製程最佳化之應用研究」,國立交通大學工業工程研究所碩士論文。5.林江龍(1999),「放電加工電極消耗可靠度與製程參數最佳化研究」,國立中央大學機械工程研究所博士論文。6.吳祥輝(2003),「應用模糊田口方法於架空式起重機桁架穩健多目標最佳化設計」,國立高雄第一科技大學機械與自動化工程研究所碩士論文。7.夏郭賢、吳漢雄(1998),「灰色關聯分析之線性數據前處理」,灰色系統學刊,第一卷第一期,47-53。8.洪維宗(2002),「灰色關聯分析於整合田口方法多重品質特性最佳化-在食品工業製程實證 」,東海大學食品科學研究所碩士論文。9.洪錦輝(1990),「多響應離線半導體生產製程之品質管制」,國立交通大學工業工程研究所碩士論文。10.紀勝財、徐立章(2001),「模糊多重品質特性田口實驗設計法之建立與電漿電弧焊接之應用 」,工業工程學刊,第十八卷第四期,97-110.11.陳耀茂(1998),「田口實驗計劃法」,滄海書局。
12.陳姣燕(1998),「應用雙反應曲面分析法於動態系統多重品質特性最佳化之研究」,國立交通大學工業工程研究所碩士論文。13.徐世輝(1998),「品質管理」,三民書局。
14.楊玉如(1996),「應用主成份分析方法於多重品質製程最佳化之研究」,國立交通大學工業工程研究所碩士論文。15.詹雅嵐(1999),「應用多屬性決策法於動態系統多重品質特性最佳化之研究」,國立交通大學工業工程研究所碩士論文。16.葉馨雅(1997),「動態系統多重品質特性最佳化之研究」,國立交通大學工業工程研究所碩士論文。17.黎正中譯(1993),「穩健設計之品質工程」,台北圖書有限公司。
18.蘇朝墩(2000),「產品穩健設計-田口品質工程方法的介紹與應用(第2版)」,中華民國品質學會。
19.鄧聚龍(2000),「灰色分析入門」,高立圖書有限公司。
20.羅中育(2000)「田口品質工程應用於模擬退火法參數組合之研究-以旅行推銷員問題(TSP)為例」,國立雲林科技大學工業工程與管理研究所碩士論文。21.蕭名君、張悠揚、林偉義、李正中(2004),「CNT-BLU for LCD TV-奈米碳管背光源創造液晶電視降價的機會」,電子與材料雜誌,第二十五期,96-102.
英文部分
22.Antony, J. (2000) “Multi-response optimization in industrial experiments using Taguchi’s quality loss function and principal component analysis,” Quality and Reliability Engineering International, Vol. 16, pp. 3-8.
23.Deng, J. (1989), “Introduction to grey system,” The Journal of Grey System, Vol. 1, No. 1, pp. 1-24.
24.Deng J. (1982), “Control Problems of Grey System,” Systems and Control Letters, Vol. 5, No. 3, pp. 288-294.
25.Dehand, K. (1989), “Quality Control, Robust Design, And the Taguchi Method,” Pacific Grove, Wadsworth, Inc., California.
26.Hsu, Chih-Ming (2001), “Solving Multi-response Problems Through Neural Networks and principle Component Analyze,” Journal of the Chinese Institute of Industrial Engineers, Vol. 18, No. 5, pp. 47-54.
27.Hsu, Chih-Ming (2004), “An integrated approach to enhance the optical performance of couplers based on neural networks, desirability functions and tabu search,” International Journal of Production Economics, Vol. 92, No. 3, pp. 241-254.
28.Jeyapaul, R., P. Shahabudeen, and K. Krishnaiah(2005), “Quality management research by considering multi-response problems in the Taguchi method –a review,” International Journal of Advanced Manufacturing Technology, Vol. 26, pp. 1331-1337.
29.Juan, H. S., F. Yu, and B. Y. Lee(2003), “The optimal cutting-parameter selection of Production cost in HSM for SKD61 tool steels,” International Journal of Machine Tools and Manufacture, Vol. 43, pp. 679-686.
30.Logothetis, N. & A. Haigh (1988), “Characterizing and optimizing multi-response processes by the Taguchi method,” Quality and Reliability Engineering International, Vol. 4, No. 2, pp. 159-169.
31.Lu, Dawei, and J. Antony(2002), “Optimization of multiple responses using a fuzzy-rule based inference System,” Taylor & Francis ,Vol. 40, No. 7, pp. 1613-1625.
32.Lin, C.L. (2004), “Use of the Taguchi Method and Grey Relational Analysis to Optimize Turning Operations with Multiple Performance Characteristics,” Materials and Manufacturing Processes, Vol. 19, No. 2, pp. 209-220.
33.Lee, B. Y. and Y. S. Tarng (2001), “Surface roughness inspection by computer vision in turning operations,” International Journal of Machine Tools and Manufacture, Vol. 41, pp. 1251-1263.
34.Lin C.L., W. D. Chou, and J. L. Lin (2001),“Optimization of the Electrical Discharge Machining Process based on the Taguchi Method with Fuzzy Logics,” Journal of Science and Technology ,Vol. 10 , No. 2 , pp. 119-127.
35.Liao, Hung-Chang (2006), “Multi-response optimization using weighted principal component,” International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 720-725.
36.Liao, Hung-Chang (2005), “Using N-D method to solve multi-response problem in Taguchi,” Journal of Intelligent Manufacturing, Vol. 16, No. 3, 2005, pp. 331-347.
37.Phillip J. Ross, (1988), “Taguchi Techniques for Quality Engineering”, McGraw-Hill, New York.
38.Phadke, Madhav Shridhar(1989), “Quality Engineering Using Robust Design”, AT&T Bell Laboratories.
39.Pignatiello, J. (1993) “Strategies for Robust Multi-response Quality Engineering,” IIE Transactions, Vol. 25, No.3, pp.5-15.
40.Reddy, P., K. Nishina, and A. Subash Babu (1997), “Unification of robust design and goal programming for multi-response optimization—a case study,” Quality and Reliability Engineering International, Vol. 13, pp. 371–383.
41.Shiau, G. H. (1990), “A study of the sintering properties of iron ores using the Taguchi's parameter design,” Journal of the Chinese Statistical Association, Vol. 28, No. 2, pp. 253-275.
42.Taguchi, G. (1990), “Introduction to Quality Engineering”, Asian Productivity Organization, Tokyo.
43.Tong, L. I. and C. T. Su (1997), “Multi-response robust design by principal component analysis,” Total Quality Management, Vol. 8, No. 6, pp. 409-416.
44.Tong, L. I. and C. T. Su (1997), “Optimizing Multi-response Problems in the Taguchi Method by Fuzzy Multiple Attribute Decision Making,” Quality and Reliability Engineering International, Vol. 13, pp. 25-34.
45.Tarng, Y.S., W.H. Yang, and S.C. Juang (2000), “The Use of Fuzzy Logic in the Taguchi Method for the Optimization of the Submerged Arc Welding Process,” International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 688-694.
46.Tong, L. I., C. H. Wang, and H. C. Chen (2005), “Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution,” International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 407-414.
47.Wu, F. C. (2004), “Optimizing Robust Design for Correlated Quality Characteristics,” International Journal of Advanced Manufacturing Technology, Vol. 24 No. 1, pp. 1-8.
48.Zadeh, L. A. (1965), “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353.