跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 11:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉冠鷨
研究生(外文):Kuan-Hua Liu
論文名稱:應用灰色關聯分析與模糊推論於多重品質特性製程之研究
論文名稱(外文):Applying Grey Relation Analysis and Fuzzy Inference on Processes with Multiple Quality Characteristics
指導教授:彭泉彭泉引用關係邱文志邱文志引用關係
指導教授(外文):Chyuan PerngWen-Chih Chiou
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:77
中文關鍵詞:多重品質特性田口方法灰色關聯分析法模糊推論奈米碳管背光模組
外文關鍵詞:Multiple Quality CharacteristicsTaguchi MethodGrey Relation AnalysisFuzzy Inference SystemCarbon Nanotube Back Light Uni
相關次數:
  • 被引用被引用:15
  • 點閱點閱:713
  • 評分評分:
  • 下載下載:207
  • 收藏至我的研究室書目清單書目收藏:0
田口方法應用品質工程精神,在提升產品品質的成效方面頗具實用價值,因此深受國內外產業界的肯定。但隨著產品的設計愈來愈複雜,產品品質的良莠問題已非最佳化單一品質特性就能解決,往往需要考慮到多品質特性的同時最佳化,而田口方法僅能解決單一品質特性最佳化的問題。若依照單一品質特性的方法對個別品質特性分別最佳化,其結果可能使品質特性間,發生相互衝突、矛盾的現象。此時只能依靠工程人員的經驗來選擇參數水準,而由於工程人員的認定標準不一致,容易產生不確定性與模糊性。針對上述問題,本研究先利用田口方法中處理單品質特性的方法,依照品質特性的特性分別計算出SN比,再將SN 比使用灰關聯生成進行數據的前處理,並藉由灰關聯係數值來建構製程參數與個別品質特性間的關係,最後結合模糊推論系統去整合多重品質特性之問題求出最佳解。本研究所提出之參數水準選取方法,用以解決品質特性間,參數水準選取結果可能產生衝突、矛盾的狀況。並將此演算模式使用MATLAB編輯成操作介面應用程式,輔助工程人員快速且正確得到製程最佳參數水準組合。為了驗證此演算模式之有效性與實用性,將實際應用於奈米碳管背光模組(Carbon Nanotube Back Light Unit, CNT-BLU)厚膜網板印刷製程(Thick-Film Screen Printing Process),以本研究所提出之演算模式-「灰關聯模糊法」,找出最佳參數水準組合,幫助案例公司節省實驗成本,縮短新產品由實驗階段導入試量產階段的時程。
Taguchi method has been extensively used for enhancing product quality in industry. More than one quality characteristics must be simultaneously considered to effectively improve the product quality due to the increasing complexity of product design. However, Taguchi’s methodology only optimize on single quality characteristic.
Optimizing each quality characteristic separately may not result the optimality for the entire production. More often, considering one quality characteristic may conflict with the other. When the conflict exits, it is mainly resolved by the engineer's experience. Thus, the quality may not be optimized and could present the possible lost. The decisions made by the engineer are to choose the parameter levels which have the properties of uncertainty and fuzziness.
To find a feasible and effective solution for the aforementioned problem, this research first uses Taguchi method by only considering the single quality characteristic; then separately calculating the SN ratio according to the quality characteristic; then, using the obtained SN ratio and grey relation generation to conduct a pre-process on data; adopting the grey relational coefficient to construct the process parameter and the individual quality characteristic relations; finally using the fuzzy inference mechanism to find the best solution. This research proposed a parameter level selection method which solves conflicts on the selection of the quality characteristic and the parameter level. The proposed algorithm is implemented by MATLAB. To demonstrate its capability of determining the optimal parameter levels combination.
In order to show the effectiveness and practicality of the proposed algorithm, we apply this method to Carbon Nanotube Back Light Unit (CNT-BLU) Thick-Film Screen Printing Process. The results show that Grey Relation Analysis and Fuzzy Inference System can find the best production process parameter level combination. The proposed methodology can significantly reduce the cost and time on experiment during the period of new product experiment and the pilot production stage.
頁次
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
1.3研究限制與範圍 3
1.4研究流程與內容 3
第二章 文獻探討 6
2.1田口式品質工程 6
2.1.1損失函數 8
2.1.2田口的品質特性 10
2.1.3影響產品或製程績效的因子 12
2.1.4直交表與線點圖 13
2.1.5田口穩健設計之步驟 13
2.2多重品質特性製程相關文獻 14
2.2.1以工程師之專業知識作判斷 14
2.2.2回歸分析模式 15
2.2.3利用訊號雜音比作分析 16
2.2.4主成份分析法 17
2.2.5多屬性決策 17
2.2.6類神經網路 18
2.2.7模糊邏輯理論 18
2.2.8灰色關聯分析 19
2.2.9多重品質特性製程最佳化之相關文獻彙整表 19
2.3本章小結 21
第三章 研究方法與模式之建構 22
3.1灰色系統理論之概論 23
3.1.1灰色關聯分析 23
3.2模糊理論之簡介 26
3.2.1模糊集合 26
3.2.2模糊推論系統架構 28
3.3研究方法小結 31
3.4模式之建構 32
3.4.1研究方法步驟與流程 32
3.4.2模式之建構與求解步驟 34
第四章 實例驗證 39
4.1奈米碳管背光模組簡介 39
4.2厚膜網印製程說明 40
4.3實驗目的與相關資料描述 40
4.3.1實驗設備與材料 41
4.3.2參數選擇 42
4.4實驗設計 43
4.5單一品質特性 44
4.6模式建構程序 46
4.7第四章小結 56
第五章 結論與建議 57
5.1結論 57
5.2 建議 58
參考文獻 59
附錄 63
參考文獻

中文部分
1.方國富(2000),「多品質特性產品之穩健參數設計」,國立成功大學工業管理科研究所碩士論文。
2.王宗富(2001),「多重品質特性製程參數最佳化研究—以高分子有機電激發光顯示器為例」,國立臺灣科技大學工業管理研究所碩士論文。
3.王耀南(1996),「智能控制系統-模糊邏輯‧專家系統‧神經網路控制」,湖南大學出版社,長沙。
4.王春和(1993),「田口方法於線外品管多重品質特性製程最佳化之應用研究」,國立交通大學工業工程研究所碩士論文。
5.林江龍(1999),「放電加工電極消耗可靠度與製程參數最佳化研究」,國立中央大學機械工程研究所博士論文。
6.吳祥輝(2003),「應用模糊田口方法於架空式起重機桁架穩健多目標最佳化設計」,國立高雄第一科技大學機械與自動化工程研究所碩士論文。
7.夏郭賢、吳漢雄(1998),「灰色關聯分析之線性數據前處理」,灰色系統學刊,第一卷第一期,47-53。
8.洪維宗(2002),「灰色關聯分析於整合田口方法多重品質特性最佳化-在食品工業製程實證 」,東海大學食品科學研究所碩士論文。
9.洪錦輝(1990),「多響應離線半導體生產製程之品質管制」,國立交通大學工業工程研究所碩士論文。
10.紀勝財、徐立章(2001),「模糊多重品質特性田口實驗設計法之建立與電漿電弧焊接之應用 」,工業工程學刊,第十八卷第四期,97-110.
11.陳耀茂(1998),「田口實驗計劃法」,滄海書局。
12.陳姣燕(1998),「應用雙反應曲面分析法於動態系統多重品質特性最佳化之研究」,國立交通大學工業工程研究所碩士論文。
13.徐世輝(1998),「品質管理」,三民書局。
14.楊玉如(1996),「應用主成份分析方法於多重品質製程最佳化之研究」,國立交通大學工業工程研究所碩士論文。
15.詹雅嵐(1999),「應用多屬性決策法於動態系統多重品質特性最佳化之研究」,國立交通大學工業工程研究所碩士論文。
16.葉馨雅(1997),「動態系統多重品質特性最佳化之研究」,國立交通大學工業工程研究所碩士論文。
17.黎正中譯(1993),「穩健設計之品質工程」,台北圖書有限公司。
18.蘇朝墩(2000),「產品穩健設計-田口品質工程方法的介紹與應用(第2版)」,中華民國品質學會。
19.鄧聚龍(2000),「灰色分析入門」,高立圖書有限公司。
20.羅中育(2000)「田口品質工程應用於模擬退火法參數組合之研究-以旅行推銷員問題(TSP)為例」,國立雲林科技大學工業工程與管理研究所碩士論文。
21.蕭名君、張悠揚、林偉義、李正中(2004),「CNT-BLU for LCD TV-奈米碳管背光源創造液晶電視降價的機會」,電子與材料雜誌,第二十五期,96-102.

英文部分
22.Antony, J. (2000) “Multi-response optimization in industrial experiments using Taguchi’s quality loss function and principal component analysis,” Quality and Reliability Engineering International, Vol. 16, pp. 3-8.
23.Deng, J. (1989), “Introduction to grey system,” The Journal of Grey System, Vol. 1, No. 1, pp. 1-24.
24.Deng J. (1982), “Control Problems of Grey System,” Systems and Control Letters, Vol. 5, No. 3, pp. 288-294.
25.Dehand, K. (1989), “Quality Control, Robust Design, And the Taguchi Method,” Pacific Grove, Wadsworth, Inc., California.
26.Hsu, Chih-Ming (2001), “Solving Multi-response Problems Through Neural Networks and principle Component Analyze,” Journal of the Chinese Institute of Industrial Engineers, Vol. 18, No. 5, pp. 47-54.
27.Hsu, Chih-Ming (2004), “An integrated approach to enhance the optical performance of couplers based on neural networks, desirability functions and tabu search,” International Journal of Production Economics, Vol. 92, No. 3, pp. 241-254.
28.Jeyapaul, R., P. Shahabudeen, and K. Krishnaiah(2005), “Quality management research by considering multi-response problems in the Taguchi method –a review,” International Journal of Advanced Manufacturing Technology, Vol. 26, pp. 1331-1337.
29.Juan, H. S., F. Yu, and B. Y. Lee(2003), “The optimal cutting-parameter selection of Production cost in HSM for SKD61 tool steels,” International Journal of Machine Tools and Manufacture, Vol. 43, pp. 679-686.
30.Logothetis, N. & A. Haigh (1988), “Characterizing and optimizing multi-response processes by the Taguchi method,” Quality and Reliability Engineering International, Vol. 4, No. 2, pp. 159-169.
31.Lu, Dawei, and J. Antony(2002), “Optimization of multiple responses using a fuzzy-rule based inference System,” Taylor & Francis ,Vol. 40, No. 7, pp. 1613-1625.
32.Lin, C.L. (2004), “Use of the Taguchi Method and Grey Relational Analysis to Optimize Turning Operations with Multiple Performance Characteristics,” Materials and Manufacturing Processes, Vol. 19, No. 2, pp. 209-220.
33.Lee, B. Y. and Y. S. Tarng (2001), “Surface roughness inspection by computer vision in turning operations,” International Journal of Machine Tools and Manufacture, Vol. 41, pp. 1251-1263.
34.Lin C.L., W. D. Chou, and J. L. Lin (2001),“Optimization of the Electrical Discharge Machining Process based on the Taguchi Method with Fuzzy Logics,” Journal of Science and Technology ,Vol. 10 , No. 2 , pp. 119-127.
35.Liao, Hung-Chang (2006), “Multi-response optimization using weighted principal component,” International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 720-725.
36.Liao, Hung-Chang (2005), “Using N-D method to solve multi-response problem in Taguchi,” Journal of Intelligent Manufacturing, Vol. 16, No. 3, 2005, pp. 331-347.
37.Phillip J. Ross, (1988), “Taguchi Techniques for Quality Engineering”, McGraw-Hill, New York.
38.Phadke, Madhav Shridhar(1989), “Quality Engineering Using Robust Design”, AT&T Bell Laboratories.
39.Pignatiello, J. (1993) “Strategies for Robust Multi-response Quality Engineering,” IIE Transactions, Vol. 25, No.3, pp.5-15.
40.Reddy, P., K. Nishina, and A. Subash Babu (1997), “Unification of robust design and goal programming for multi-response optimization—a case study,” Quality and Reliability Engineering International, Vol. 13, pp. 371–383.
41.Shiau, G. H. (1990), “A study of the sintering properties of iron ores using the Taguchi's parameter design,” Journal of the Chinese Statistical Association, Vol. 28, No. 2, pp. 253-275.
42.Taguchi, G. (1990), “Introduction to Quality Engineering”, Asian Productivity Organization, Tokyo.
43.Tong, L. I. and C. T. Su (1997), “Multi-response robust design by principal component analysis,” Total Quality Management, Vol. 8, No. 6, pp. 409-416.
44.Tong, L. I. and C. T. Su (1997), “Optimizing Multi-response Problems in the Taguchi Method by Fuzzy Multiple Attribute Decision Making,” Quality and Reliability Engineering International, Vol. 13, pp. 25-34.
45.Tarng, Y.S., W.H. Yang, and S.C. Juang (2000), “The Use of Fuzzy Logic in the Taguchi Method for the Optimization of the Submerged Arc Welding Process,” International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 688-694.
46.Tong, L. I., C. H. Wang, and H. C. Chen (2005), “Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution,” International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 407-414.
47.Wu, F. C. (2004), “Optimizing Robust Design for Correlated Quality Characteristics,” International Journal of Advanced Manufacturing Technology, Vol. 24 No. 1, pp. 1-8.
48.Zadeh, L. A. (1965), “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top