(3.215.183.251) 您好!臺灣時間:2021/04/23 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭偉佑
研究生(外文):Wei-Yu Cheng
論文名稱:探討布朗運動膠體粒子具擴散泳行為時在楔型管中的吸附行為
論文名稱(外文):The Adsorption in Constricted Tubes of Brownian Particles with Diffusiophoresis
指導教授:張有義張有義引用關係
指導教授(外文):You-Im Chang
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:130
中文關鍵詞:布朗運動楔型管軌跡分析理論DLVO理論擴散泳
外文關鍵詞:Brownian motionconstricted tubetrajectory methodDLVO theorydiffusiophoresis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在模擬具布朗運動(Brownian motion)行為之膠體粒子於單一楔型管中(constricted tube)的吸附行為,並分別探討幾何形狀為SCT、PCT和HCT三種不同楔型管對其吸附行為的影響。
本論文採用軌跡分析理論來描述膠體粒子於收集器中的吸附行為,同時考慮不同楔型管管型,以及各種不同作用於膠體粒子表面的作用力所產生的影響。其中作用力可包含有因膠體粒子的移動速度與流場的速度差所造成的拖曳力(drag force);膠體粒子受周圍介質分子的熱運動而產生的布朗運動擴散力;膠體粒子與收集器之間因凡得瓦爾力(van der Waars force)與電荷排斥力(electrostatic repulsion force)所產生的DLVO作用力;膠體粒子受到溶液中溶質分子濃度梯度差而引起的擴散泳(diffusiophoresis)效應…等。
由模擬的結果發現,當膠體有擴散泳現象發生時,有利於膠體粒子吸附在收集器的表面;當表面電位下降時,會降低膠體粒子與收集器的電荷排斥力,而有利於膠體粒子的吸附,若表面電位增加時,DLVO理論能障會隨之上升,而不利於膠體粒子的吸附。在本文的最後,將會利用此楔型管吸附模式,與相關的實驗結果作比較,以瞭解本論文所採用模擬方法的準確性。
The deposition of colloidal particles onto the collector surfaces of porous media is investigated by utilizing the Brownian dynamics simulation method. The pore structure in a filter bed was characterized by the three different constricted tube models: the parabolic (PCT), the sinusoidal (SCT) and the hyperbolic (HCT) constricted tube. The effect of various shapes of the total interaction energy curves of DLVO theory and of diffusiophoresis on the collection efficiencies of particles are also examined. The simulation results show that the particle collection efficiency is strongly dependent on the shape of the total interaction energy curve, but less dependent on the geometry of the tube. The diffusiophoresis effect will increase the collection efficiency of Brownian particles. The present theoretical model is also compared with the available experimental data at the end of this thesis.
中文摘要 I
英文摘要 II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 IX
第一章 緒論 1
1-1 前言 1
1-2 研究方向 3
第二章 基本方程式與理論分析 7
2-1 楔型管模型內的流場分佈 7
2-2 布朗運動 15
2-3 DLVO理論 16
2-3-1 凡得瓦爾吸引力 16
2-3-2 電荷排斥力 18
2-3-3 電雙層理論 19
2-3-4 DLVO內部作用能量 20
2-4 擴散泳 24
2-4-1 球型膠體粒子垂直於收集器表面之擴散泳運動 28
2-4-2 球型膠體粒子平行於收集器表面之擴散泳運動 29
2-5 減速效應 33
第三章 模擬方法 34
3-1 模擬流程 34
3-2 Langevin方程式 34
3-3 軌跡分析 35
3-3-1 球型膠體粒子垂直於收集器之軌跡分析 38
3-3-2 球型膠體粒子平行於收集器之軌跡分析 39
3-4 吸附判定與吸附效率的計算 39
3-5 收集器表面的微觀現象 40
第四章 結果與討論 43
4-1 四種DLVO理論能障的影響探討 43
4-1-1 DLVO作用總能量 與 之關係 45
4-1-2 DLVO作用力 與 之關係 48
4-2 DLVO理論能障與擴散泳現象對不同幾何形狀之收集器 51
4-2-1 不具有擴散泳現象的膠體粒子的吸附效率 51
4-2-2 具有擴散泳現象的膠體粒子對其吸附效率的影響 57
4-2-3 表面電位的改變對膠體粒子吸附效率的影響 62
4-3 理論模擬結果和實驗結果的比較 65
4-3-1 Anderson & Prieve (1990)[36]的計算結果比較 65
4-3-2 Jun et al. (2005)[37]的模擬結果比較 69
4-3-3 Elmielech & O’Melia(1990)[38]的實驗結果比較 72
4-3-4 Bai & Tien(1999)[39]的實驗結果比較 76
第五章 結論與展望 79
參考文獻 81
附錄 86
[1]Anderson, J. L. ‘‘Colloid transport by interfacial’’, Annu. Rev. Fluid Mech. 21, 61 (1989).
[2]Dukhin, S. S., and Derjaguin, B. V., “Electrokinetics phenomena.” in “Surface and Colloid Science” (E. Matijevic, Ed.), Vol. 7, Wiley, New York (1974).
[3]Ebel, J. P., Anderson, J. L., and Prieve, D. C., “Diffusiophoresis of latex particles in electrolyte gradients”, Langmuir 4, 396 (1988).
[4]Staffeld, P. O., and Quinn, J. A., “Diffusio-induced banding of colloid particles via diffusiophoresis. 2. Non-electrolytes”, J. Colloid and Interface Sci. 130, 88 (1989).
[5]Payatakes, A. C., Tien, C., and Turian, R. M., “A New Model for Granular Porous Media: Part I. Model Formulation”, AICHE J. 19(1), 58 (1973).
[6]Payatakes, A. C., Tien, C., and Turian, R. M., “A New Model for Granular Porous Media: Part II. Numerical Solution of Steady State Incompressible Newtonian Flow Through Periodically Constricted Model”, AICHE J. 19(1), 67 (1973).
[7]Guzy, C. J., Bonano, E. J., and Davis, E. J., “The Analysis of Flow and Colloidal Particle Retention”, J. Colloid and Interface Sci. 95(2), 523 (1983).
[8]Chang, Y. I., Chen, S. C., and Chern, D. K., “Hydrodynamic Field Effect on Brownian Particles Deposition in Porous Media”, Separation and Purification Technology 27, 97 (2002).
[9]Pendse, H., Chiang, H. W., and Tien, C. “Analysis of Transport Processes with Granular Media Using the Constricted Tube Model”, Chemical Engineering Sci. 38(8), 1137 (1983).
[10]Spielman, L. A., and Fitzpatrick, J. A., “Theory for Particle Collection under London and Gravity Force”, J. Colloid and Interface Sci. 42(3), 607 (1973).
[11]Chow, J. C. F., and Soda, K., “Laminar Flow in Tubes with Constriction”, The Physics of Fluids 15(10), 1700 (1972).
[12]Prieve, D. C., and Ruckenstein, E., “Effect of London Force upon the Rate of Deposition of Brownian Particles”, AICHE J. 20(6), 1178 (1974).
[13]Ruckenstein, E., and Prieve, D. C., “Adsorption and Desorption of Particles and their Chromatographic Separation”, AICHE J. 22(2), 276 (1976).
[14]Rajagopalan, R., and Kim, J. S., “Adsorption of Brownian Particles in the Presence of Potential Barriers: Effect of Different Models of Double-Layer Interaction”, J. Colloid and Interface Sci. 83(2), 428 (1981).
[15]Bhattacharjee, S., Ko, C. H., and Elimelech, M., “DLVO Interaction between Rough Surface”, Langmuir 14, 3365 (1998).
[16]Ramarao, B. V., Tien, C., and Mohan, S., “Calculation of Single Fiber Efficiencies for Interception and Impaction with Superposed Brownian Motion”, J. Aerosol Sci. 25(2), 295 (1994).
[17]Chang, Y. I., Whang, J. J., “Theoretical Simulation of the Collection Efficiencies of Brownian Particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspect 125, 137 (1997).
[18]Chang, Y. I., and Whang, J. J., “Deposition of Brownian Particles in the Presence of Energy Barriers of DLVO Theory: Effect of the Dimensionless Group”, Chemical Engineering Sci. 53(23), 3923 (1998).
[19]Chang, Y. I., Chen, S. C., and Chern, D. K., “Hydrodynamic Field Effect on Brownian Particles Deposition in Porous Media”, Separation and Purification Technology 30, 11 (2003).
[20]Neira, M. A., and Payatakes, A. C., “Collection Solution of Creeping Newtonian Flow through Periodically Constricted Tubes with Piecewise Continuous Wall Profile”, AICHE J. 24(1), 43 (1978).
[21]Fedkiw, P., and Newman, J., “Mass Transfer at High Peclet Number for Creeping Flow in a Packed-Bed Reactor”, AICHE J. 23(3), 255 (1977).
[22]Fedkiw, P., and Newman, J., “Entrance Region Mass Transfer Coefficients in Packed Bed Reactors”, AICHE J. 25(6), 1077 (1979).
[23]Venlatesan, M., and Rajagopalan, R., “Hyperboloidal Constricted Tube Model of Porous Media”, AICHE J. 26(4), 694 (1980).
[24]Pendse, H., and Tien, C., “A Simulation Model of Aerosol Collection in Granular Media”, J. Colloid and Interface Sci. 87(1), 225 (1982).
[25]Chiang, H. W., and Tien, C., “Dynamics of Deep-Bed Filtration Part I: Analysis of Two Limiting Cases”, AICHE J. 31(8), 1349 (1985).
[26]Deerjaguin, B., and Landau, L., “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes”, Progress in Surface Sci. 43(1-4), 30 (1993).
[27]Verwey, E. J. W., and Overbeek, J. T. G., “Theory of the Stability of Lyophobic Colloids”, J. Colloid Sci. 10(2), 224 (1955).
[28]Gouy, G., J. Phys. 9, 457 (1910).
[29]Chapman, D. L., Phil. Mag. 25, 475 (1913).
[30]Anderson, J. L., Lowell, M. E., and Prieve, D. C., “Motion of a Particle Generated by Chemical Gradients. Part I. Non-electrolytes”, J. Fluid Mech. 117, 107 (1982).
[31]Anderson, J. L., and Prieve, D. C., “Diffusiophoresis Caused by Gradients of Strongly Adsorbing Solutes”, Langmuir 7, 403 (1991).
[32]Morrison, F. A., and Stukel, J. J., “Electrophoresis of an Insulating Sphere Normal to a Conducting Plane”, J. Colloid and Interface Sci. 33, 88 (1970).
[33]Keh, H. J., and Anderson, J. L., “Boundary Effects on Electrophoretic Motion of Colloidal Spheres”, J. Fluid Mech. 153, 417 (1985).
[34]Keh, H. J., and Jan, J. S., “Boundary Effects on Diffusiophoresis and Electrophoresis Motion of a Colloidal Sphere Normal to a Plane Wall”, J. Colloid and Interface Sci. 183, 458 (1996).
[35]Keh, H. J., and Hsu, J. H., “Boundary Effects on Diffusiophoresis of Cylindrical Particles in Nonelectrolyte Gradients”, J. Colloid and Interface Sci. 221, 210 (2000).
[36]Anderson, J. L., and Prieve, D. C., “Diffusiophoresis Caused by Gradients of Strongly Adsorbing Solutes”, Langmuir 7, 403 (1990).
[37]Jun, C., Peng, X. F., and Lee, D. J., “Diffusion Coefficient of Brownian Particle in Rough Micro-channel”, J. Colloid and Interface Sci. 296, 737 (2006).
[38]Bai, R., and Tien, C., “Particle Deposition under Unfavorable Surface Interactions”, J. Colloid and Interface Sci. 218, 488 (1999).
[39]Elimelech, M., and O’Melia, R. C., Langmuir 6, 1153 (1990).
[40]Chang, Y. I., Chen, S. J., and Lee, E., “Prediction of Brownian Particle Deposition in Porous Media Using the Constricted Tube Model”, J. Colloid and Interface Sci. 266, 48 (2003).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔