跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 08:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣伯頡
研究生(外文):Po-Chieh Chiang
論文名稱:利用化學還原法製備生醫應用的FePt奈米粒子
論文名稱(外文):Fabrication of FePt Nanoparticles by Chemical Reduction Method for Biomedical Applications
指導教授:姚永德姚永德引用關係何志松
指導教授(外文):Yeong-Der YaoChih-Sung Ho
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:129
中文關鍵詞:鐵鉑合金奈米粒子生醫應用
外文關鍵詞:FePtnanoparticlebiomedical application
相關次數:
  • 被引用被引用:6
  • 點閱點閱:571
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:0
此論文我們報告了FePt奈米粒子的製備、相轉換程序、與生物分子的結合及其在微波響應等成果。程序上我們利用化學還原法,製備出約2-3 nm均勻分散的FePt奈米粒子。由於水溶性的磁性奈米粒子在部分生醫領域有廣泛的應用,本研究利用相轉換的程序使FePt奈米粒子從油溶性轉為水溶性,藉由FT-IR及XPS的結果檢驗奈米粒子的表面官能基變化,觀察到粒子表面在相轉換前後的特徵型態及鍵結方式。經由相轉換的FePt水溶性奈米粒子,我們嘗試與目標生物分子結合作為藥物釋放的前驅物,此研究中選用的是streptavidin和biotin,利用protein-label的方式檢驗FePt奈米粒子和分子結合的定量分析。

在此研究中我們亦嘗試將製備的FePt奈米粒子置於水溶液中觀察其介電係數的變化以作為其在生醫應用的參數,藉由我們設計的水溶液量測系統,可以精確量測到FePt在水溶液當中在不同頻率下(45 MHz-50 GHz)的介電係數。
In this thesis, we reported the synthesis of FePt nanoparticles, the phase transfer process, the conjugation of FePt nanoparticles with biomolecules, and the microwave response of FePt solutions. We have synthesized 2-3 nm monodispersed hydrophobic FePt nanoparticles by chemical reduction method. Nevertheless, the water-based nanoparticles have been more widely used in biomedical applications. We utilized the phase transfer process to transfer FePt nanoparticles from hydrophobic to hydrophilic. The surface modified FePt nanoparticles were examined by FT-IR and XPS. The surface characteristics and binding forms of different phase nanoparticles were observered. The ligand exchanged FePt nanoparticles were water-based which had been conjugated with the target biomolecules, streptavidin and biotin, to form the precursors for drug delivery. The quantitative analysis of the conjugation of FePt nanoparticles with biomolecules was examined by protein-label method.

To be an important parameter for the biomedical applications, the effective permittivity of these FePt nanoparticles filled in aqueous solution was measured by using an open-ended coaxial line technique. Their data detected from 45 MHz to 50 GHz through their microwave responses provided a very promising method of analysis of nanoparticles in solution for bio-applications.
目錄
中文摘要……………………………………………………………………………Ⅰ
英文摘要……………………………………………………………………………Ⅱ
目錄…………………………………………………………………………………Ⅲ
表目錄………………………………………………………………………………Ⅵ
圖目錄………………………………………………………………………………Ⅶ

第一章 緒論………………………………………………………………………1
1.1奈米技術在生醫的應用…………………………………………………………2
1.2奈米材料的性質…………………………………………………………………7
1.2.1 小尺寸效應………………………………………………………………7
1.2.2 表面效應…………………………………………………………………7
1.2.3 量子尺寸效應……………………………………………………………8
1.3磁性奈米粒子的特性……………………………………………………………10
1.3.1單一磁區現象………………………………………………………………10
1.3.2矯頑場上升現象……………………………………………………………12
1.3.3超順磁效應…………………………………………………………………13
1.3.4表面電子自旋不規則………………………………………………………14
1.3.5材料相變化…………………………………………………………………16
1.3.6表面磁異向性能……………………………………………………………16
1.4磁性奈米粒子在生化的應用……………………………………………………18

第二章 文獻回顧…………………………………………………………………22
2.1奈米粒子的製備…………………………………………………………………23
2.1.1 物理方法…………………………………………………………………24
2.1.2 化學方法…………………………………………………………………27
2.2 FePt奈米粒子的介紹…………………………………………………………34
2.2.1 FePt奈米粒子的特性……………………………………………………34
2.2.2 FePt奈米粒子的製備……………………………………………………36
2.2.3 FePt奈米粒子在生醫的應用………………………………………………39
2.3生物分子的介紹…………………………………………………………………53
2.3.1 Streptavidin……………………………………………………………53
2.3.2 Biotin……………………………………………………………………55
2.3.3 Streptavidin-Biotin的複雜結構……………………………………57
2.4生物結合系統與偵測分析的介紹…………………………………………………59
2.4.1 Surface Modification of Nanoparticles…………………………59
2.4.2 Zero-Length Cross-linkers……………………………………………61
2.4.3 酵素免疫分析法………………………………………………………………62
2.5奈米粒子水溶液的微波量測………………………………………………………64

第三章 水溶性FePt磁性奈米粒子的製備…………………………………………65
3.1研究動機與目的……………………………………………………………………66
3.2實驗設計……………………………………………………………………………67
3.2.1製備油溶性FePt奈米粒子…………………………………………………67
3.2.2製備水溶性FePt奈米粒子…………………………………………………68
3.3實驗藥品與儀器……………………………………………………………………70
3.3.1藥品……………………………………………………………………………70
3.3.2儀器……………………………………………………………………………71
3.4實驗步驟……………………………………………………………………………72
3.4.1製備油溶性FePt磁性奈米粒子………………………………………………72
3.4.2製備水溶性FePt磁性奈米粒子………………………………………………73
3.5結果與討論…………………………………………………………………………75
3.5.1 FePt奈米粒子的晶格結構……………………………………………………75
3.5.2 FePt奈米粒子的粒徑分布……………………………………………………76
3.5.3FePt奈米粒子的成分分析……………………………………………………80
3.5.4 FePt奈米粒子的磁性性質…………………………………………………80
3.5.5 FePt奈米粒子的表面特徵…………………………………………………81

第四章 FePt磁性奈米粒子與生物分子的結合……………………………………88
4.1研究動機與目的……………………………………………………………………89
4.2實驗設計……………………………………………………………………………90
4.2.1 Nanoparticles Conjugate with Proteins………………………90
4.2.2分析方法………………………………………………………………………91
4.3實驗藥品與儀器……………………………………………………………………92
4.3.1藥品……………………………………………………………………………92
4.3.2儀器……………………………………………………………………………92
4.4實驗步驟……………………………………………………………………………93
4.4.1將生物分子修飾在水溶性FePt奈米粒子表面………………………………93
4.4.2檢驗奈米粒子與生物分子的結合……………………………………………94
4.5結果與討論…………………………………………………………………………96
4.5.1 定性分析……………………………………………………………………96
4.5.2 定量分析……………………………………………………………………105

第五章 FePt磁性奈米粒子的微波響應……………………………………………111
5.1研究動機與目的……………………………………………………………………112
5.2實驗方法……………………………………………………………………………113
5.3結果與討論…………………………………………………………………………114
5.3.1去離子水的介電性質在理論與實際量測的結果……………………………114
5.3.2 FePt磁性奈米粒子的微波響應………………………………………………114

第六章 研究結論……………………………………………………………………120
第七章 參考文獻……………………………………………………………………123
1. W. Göpel, “Bioelectronics and nanotechnologies”, Biosens. Bioelectron., 13, 723, 1998
2. T. A. Taton, “Bio-Nanotechnology:Two-Way Traffic”, Nature Marterials, 2, 73, 2003
3. W. J. Parak, R. Boudreau, M. L. Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos, C. Larabell, “Cell Motility and Metastatic Potential Studies Based on Quamtum Dot Imaging and Phagokinetic Tracks”, Adv. Mater., 14, 882, 2002
4. B. D. Reiss, C. Mao, D. J. Solis, K. S. Ryan, T. Thomson, A. M. Belcher, “Biological Routs to Metal Alloy Ferromagnetic Nanostructures”, Nano Lett., 4, 1127, 2004
5. K. J. Klabunde, “Nanoscale Materials in Chemistry”, John Wiley &Sons, 2001
6. H. W. Gu, K. M. Xu, C. J. Xu, B. Xu, “Biofunctional Magnetic Nanoparticles for Protein Seperation and Pathogen Detection”, Chem. Commun., 941, 2006
7. J. J. Storhoff, A. D. Lucas, V. Garimella, Y. P. Bao, U. R. Müller, “Homogeneous Detection of Unamplified Genomic DNA Sequences Based on Colorimetric Scatter of Gold Nanoparticle Probe”, Nat. Biotechnol., 22, 883, 2004
8. N. L. Rosi, C. A. Mirkin, “Nanostructures in Biodiagnostics”, Chem. Rev., 105, 1547, 2005
9. 徐善慧,「奈米生物醫學」,經濟部工業局,2002
10. 呂宗昕,「圖解奈米科技與光觸媒」,商周出版社,2003
11. J. Fremkel, J. Dorfman, Nature, 126, 274, 1930
12. B. D. Cullity, “Introduction to Magnetic Materials”, Addison-Wesley, 1972
13. S. Chikazumi, C. D. Graham, “Physics of Ferromagnetism”, Clarendon Press, 1997
14. 何建新, 「FePt 奈米微粒之製備與自組裝特性研究」, 國立清華大學材料科學工程研究所碩士論文, 2004
15. R. H. Kodama, “Magnetic nanoparticles”, J. Magn. Magn. Mater., 200, 359, 1999
16. Y. Labaye, et.al, JAP, 91, 8715, 2002
17. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, “Seletive Colorimetric Detection of Polynucleotide Based on the Distance-Dependent Optical Properties of Gold Nanoparticles”, Science, 277, 1078, 1997
18. S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices”, Science, 287, 1989, 2000
19. J. M. Perez, L. Josephson, T. O’Loughlin, D. Hogemann, R. Weissleder, “Magnetic Relaxation Switches Capable of Sensing Molecular Interactions”, Nat. Biotechnol., 20, 816, 2002
20. Y. W. Jun, Y. M. Huh, J. S. Choi, J. H. Lee, H. T. Song, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, “Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging”, J. Am. Chem. Soc., 127, 5732, 2005
21. S. Sun, H. Zeng, “Sized-Controlled Synthesis of Magnetic Nanoparticles”, J. Am. Chem. Soc., 124, 8204, 2002
22. D. Weller, A. Moser, “Thermal Effect Limits in Ultrahigh-Density Magnetic Recording” IEEE Trans. Magn., 35, 4423, 1999
23. 郭清癸、黃俊傑、牟中原,「金屬奈米粒子的製造」,物理雙月刊,23卷6期,2001
24. S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, B. D. Terris, “Controlled Synthesis and Assembly of FePt nanoparticles ”, J. Phy. Chem. B, 107, 5419, 2003
25. T. B. Massalski , J. L. Murray, L. H. Bennett, H. Baker, “Binary alloy phase diagrams”, Metals Park, Ohio : American Society for Metals, 1986
26. B. Stahl, J. Ellrich, R. Theissmann, M. Ghafari, S. Bhattacharya, H. Hahn, N. S. Gajbhiye, D. Kramer, “Electronic properties of 4-nm FePt particles”, Phy. Rev. B, 67, 014422, 2003
27. S. Sun, E. E. Fullerton, D. Weller, C. B. Murray, “Compositionally Controlled FePt Nanoparticle Materials”, IEEE Trans. Magn., 37, 1239, 2001
28. K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, Z. L. Wang, “Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method”, Nano Lett., 3, 1647, 2003
29. S. Saita, S. Maenosono, “FePt Nanoparticles with a Narrow Distribution Synthesized via Pyrolysis of Iron(Ⅲ) Ethoxide and Platinum(Ⅱ) Acetylacetonate”, Chem. Mater.,17, 3705, 2005
30. P. Gibot, E. Tronc, C. Chanéac, J. P. Jolivet, D. Fiorani, A. M. Testa, “(Co,Fe)Pt nanoparticles by aqueous route ; self-assembling, thermal and magnetic properties”, J. Magn. Magn. Mater., 290-291, 555, 2005
31. C. J. Xu, K. M. Xu, H. W. Gu, X. F. Zhong, Z. H. Guo, R. K. Zheng, X. X. Zhang, B. Xu, “Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins”, J. Am. Chem. Soc.,126, 3392, 2004
32. R. Hong, N. O. Fischer, T. Emrick, V. M. Rotello, “Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications”, Chem. Mater., 17, 4617, 2005
33. H. W. Gu, P. L. Ho, K. W. T. Tsang, L. Wang, B. Xu, “Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin- Resistant Entrococci and Other Gram-Positive Bacteria at Ultralow Concentration”, J. Am. Chem. Soc., 125, 15702, 2003
34. H. W. Gu, P. L. Ho, E. Tong, L. Wang, B. Xu, “Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities”, Nano Lett., 3, 1261, 2003
35. D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig, “Superparamagnetic Fe2O3 Beads-CdSe/ZnO Quantium Dots Core-Shell Nanocomposite Particles for Cell Seperation”, Nano Lett., 4, 409, 2004
36. H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu, “Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles: A Conjugate of Quantum Dot and Magnetic Nanoparticles”, J. Am. Chem. Soc.,126, 5664, 2004
37. A. Campion, P. Kambhampati, “Surface-Enhanced Raman Scattering”, Chem. Soc. Rev., 27, 241, 1998
38. H.W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang, B. Xu, “Heterodimers of Nanoparticles: Formation at a Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules”, J. Am. Chem. Soc., 127, 34, 2005
39. G. T. Hermanson, “Bioconjugate Techniques”, Academic Press, 1995
40. P. C. Weber, J. J. Wendoloski, M. W. Pantoliano, F. R. Salemme, “Crystallographic and Thermodynamic Comparison of Natural and Synthetic Ligands Bound to Streptavidin”, J. Am. Chem. Soc., 114, 3197, 1992
41. S. Freitag, I. L. Trong, L. Klumb, P. S. Stayton, R. E. Stenkamp, “Structural Studies of the Streptavidin Binding Loop”, Protein Sci., 6, 1157, 1997
42. E. Y. Sun, L. Josephson, K. A. Kelly, R. Weissleder, “Development of Nanoparticles Libraries for Biosensing”, Bioconjugate Chem., 17, 109, 2006
43. T. W. Athey, M. A. Stuchly, S. S. Stuchly, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part I”, IEEE Trans. Instrum. Measur., MTT-30, 82, 1982
44. V. Salgueiriño-Maceria, L. M. Liz-Marzán, M. Farle, “Water-Based Ferrofluids from FexPt1-x Nanoparticles Synthesized in Organic Media”, Langmuir, 20, 6946, 2004
45. W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection”, Science, 281, 2016, 1998
46. X. Gao, K. Tam, K. M. K. Yu, S. C. Tsang, “Synthesis and Characterization of Thiol-Capped FePt Nanomagnetic Porous Particles”, Small, 1, 949, 2005
47. D. I. Gittins, F. Caruso, “Spontaneous Phase Transfer of Nanoparticle Metals from Organic to Aqueous Media”, Angew. Chem. Int. Ed., 40, 3001, 2001
48. Y. Wang, J. F . Wong, X. Teng, X. Z. Lin, H. Yang, “ “Pulling” Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrin”, Nano Lett., 3, 1555, 2003
49. S. Sun, “Recent Advances in Chemical Synthesis, Self- Assembly, and Applications of FePt Nanoparticles”, Adv. Mater., 18, 393, 2006
50. N. Shukla, C. Liu, P. M. Jones, D. Weller, “FTIR Study of Surfactant Bonding to FePt Nanoparticles”, J. Magn. Magn. Mater., 226, 178, 2003
51. Q. Liu, Z. Xu, “Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using 16-Mercaptohexadecanoic Acid” Langmuir, 11, 4617, 1995
52. D. H. Lee, R. A. Condrate Sr., W. C. Lacourse, “FTIR Spectral Characterization of Thin Film Coatings of Oleic Acid on Glasses Part II Coatings on Glass from Different Media Such as Water, Alcohol, Benzene and Air”, J. Mater. Sci., 35, 4961, 2000
53. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely, “Synthesis and Reactions of Functionalised Gold Nanoparticles”, J. Chem. Soc., Chem. Commun., 1655, 1995
54. R. G. Nuzzo, L. H. Dubois, D. L. Allara, “Fundametal Studies of Microscopic Wetting on Organic Surface. 1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers”, J. Am. Chem. Soc., 112, 558, 1990
55. R. M. Buckland, “Strong Signals from Streptavidin-Biotin”, Nature, 320, 557, 1986
56. A. Arakaki, S. Hideshima, T. Nakagawa, D. Niwa, T. Tanaka, T. Matsunaga, T. Osaka, “Detection of Biomolecular Interaction Between Biotin and Streptavidin on a Self-Assembled Monolayer Using Magnetic Nanoparticles”, Biotechnol. Bioeng., 88, 543, 2004
57. B. G. Nidumolu, M. C. Urbina, J. Hormes, C. S. S. R. Kumar, W. T. Monroe, “Functionalization of Gold and Glass Surface with Magnetic Nanoparticles Using Biomolecular Interactions”, Biotechnol. Prog., 22. 91, 2006
58. S. Meskers, J. M. Ruysschaert, E. Goormaghtigh, “Hydrogen-Deuterium Exchange of Streptavidin and Its Complex with Biotin Studied by 2D-Attenuated Total Reflection Fourier Transform Infrared Spectroscopy”, J. Am. Chem. Soc., 121, 5115, 1999
59. N. L. Buck, “Calibration of Dielectric Constant Probes Using Salt Solutions of Unknown Conductivity”, IEEE Trans. Instrum. Meas., 45, 1, 1996
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top