跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方淞
研究生(外文):Sung Fang
論文名稱:利用類神經網路於分隔內壁蒸餾塔之推論控制
論文名稱(外文):Inferential Control of a Dividing-Wall Distillation Column Using Artificial Neural Networks
指導教授:黃琦聰
指導教授(外文):Chi-tsung Huang
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:105
中文關鍵詞:熱整合型蒸餾塔分隔內壁蒸餾塔能源節約
外文關鍵詞:Dividing Wall Column
相關次數:
  • 被引用被引用:1
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
文獻上有關分隔內壁蒸餾塔的探討大部份均著重於其之模式化
、分析與設計,而有關其控制方面的報告卻顯得較為稀少。本研究乃利用自行發展的分隔內壁蒸餾塔動態模擬軟體,來進行組成控制的研究。利用類神經網路來估測其產物濃度;一方面是為了要改善使用組成分析儀器的種種缺點;另一方面則是要提高組成估測的準確性。爾後,再利用類神經網路所估測出來的組成來調節回流比、旁流物流量、再沸器熱值,並且使用溫度來控制液相分配比例;至於汽相分配比例,為了維持塔壓,則是不加以控制。由電腦模擬的結果發現,本研究所提出的控制策略,對於進料組成的變化干擾以及設定點的階梯變化,均能有相當不錯的控制效果。
The majority of studies about dividing wall column (DWC) usually focus on modeling, analysis, design; however, the research on its control seems comparatively rare. In this study, a dynamic simulation including basic control of a dividing wall distillation column has been developed. On the other hand, one of the main difficulties in DWC control is getting reliable and accurate measurements of product compositions. In order to improve the shortcomings of using on-line analyzer, artificial neural networks (ANN) have been used as a soft sensor in this study. First, transient data of process compositions and secondary measurements, such as tray temperatures, reflux ratio, liquid split ratio, and reboiler duty are obtained. Then, a composition estimator is developed using these data by the training and testing of recurrent ANN models based on a cross-validation technique. Finally, a control strategy based on the ANN soft sensor is proposed. Simulation results have demonstrated that the ANN estimator can reliably estimate process compositions on-line from secondary measurements. In addition, the proposed control strategy using ANN soft sensor can perform very well when disturbances occur, even in the high purity products.
頁次
中文摘要……………………………………………………………III
英文摘要……………………………………………………………IV
誌謝…………………………………………………………………V
目錄…………………………………………………………………VI
表目錄……………………………………………………………..VIII
圖目錄……………………………………………………………….IX
第一章 緒論…………………………………………………….1
第二章 文獻回顧……………………………………………….3
第三章 動態模擬與熱物性質………………………………….9
 模組模式化………………………………………..11
 熱物性質…………………………………………..18
 數值方法…………………………………………..21
 計算流程…………………………………………..23
第四章 製程之穩態設計………………………………………25
 製程簡述…………………………………………..25
 靜態模擬…………………………………………..27
 穩態設計…………………………………………..29
第五章 網路之訓練與測試……………………………………39
 溫度測量點之選擇……………………………….39
 數據之收集……………………………………….41
 組成估測之ANN架構…………………………..46
 類神經網路之訓練與測試……………………….50
 訓練及測試結果………………………………….52
第六章 組成之推論控制………………………………………59
 控制架構之探討………………………………….60
 高濃度測試……………………………………….64
第七章 結論…………………………………………………...101
參考文獻 ………………………………………………………...103
簡歷………………………………………………………………...105













表目錄

表3.1 Extened Antoine Equation 之常數…………………………..24
表3.2 汽液焓之常數及汽化焓…………………………………….24
表3.3 臨界物理性質之常數……………………………………….24
表4.1 進料組成及產物組成……………………………………….34
表4.2 溫度設定點以及相關之操作變數………………………….34
表4.3 操縱變數與受控變數之範圍……………………………….34
表4.4 DWC之結構參數……………………………………………35
表4.5 物質之進出條件…………………………………………….35
表4.6 操作條件…………………………………………………….35
表5.1 訓練組與測試組之各項操作變數………………………….47
表5.2 類神經網路之訓練與測試結果……………………………..53
表6.1 CS1之控制參數……………………………………………...61
表6.2 CS2之控制參數……………………………………………...61
表6.3 CS3之控制參數……………………………………………...62
表6.4 CS4模式之控制參數………………………………………...62




圖目錄

圖3.1 分隔內壁蒸餾塔之動態模型架構圖…………………….....10
圖3.2 汽液平衡板簡圖…………………………………………….13
圖3.3 再沸器簡圖………………………………………………….16
圖3.4 完全冷凝器與儲存槽之簡圖……………………………….16
圖3.5 重整回饋式PID控制器及程序模擬方塊圖……………...19
圖3.6 苯與甲苯在5bar下之T-xy圖………………………………22
圖3.7 苯與甲苯在1bar下之T-xy圖……………………………...22
圖4.1 Giroux專利之控制架構……………………..........................26
圖4.2………………………………………………………………...28
圖4.3 基礎控制架構……………………………………………….32
圖4.4 三點溫度控制……………………………………………….33
圖4.5 預先蒸餾段與主塔之組成分布………………….................36
圖4.6 預先蒸餾段與主塔之溫度分布…………………………….37
圖5.1 回流比改變後之塔板溫度變異分布圖 ……………………42
(a)主塔
(b)預先蒸餾段
圖5.2 訓練數據:進料與旁流物之變化…………………………....43
圖5.3 訓練數據:溫度設定點變化…………………………………44
圖5.4 訓練數據:產物之組成變化…………………………………45
圖5.5 雙隱藏層之類神經網路架構圖…………………………….48
圖5.6 組成估測之類神經網路模式……………………………….51
圖5.7 實際組成與ANN10之預測結果比較 (測試I組)………...55
圖5.8 實際組成與ANN10之預測結果比較 (測試II組)…..………56
圖5.9 實際組成與ANN10之預測結果比較 (測試III組)………….57
圖6.1 CS1之控制架構……………………………………………..66
圖6.2 CS2之控制架構……………………………………………..67
圖6.3 CS3之控制架構……………………………………………..68
圖6.4 CS4之控制架構……………………………………………..69
圖6.5 進料Benzene增加5 mole %之應答 (CS1)………………..70
圖6.6 進料Benzene減少5 mole %之應答 (CS1)………………...71
圖6.7 進料流量增加10%之應答 (CS1)…………………………..72
圖6.8 進料流量減少10%之應答 (CS1)…………………………..73
圖6.9 產物濃度設定點改變之應答 (CS1)………………………..74
圖6.10 進料Benzene增加5 mole %之應答 (CS2)……………….75
圖6.11 進料Benzene減少5 mole %之應答 (CS2)………………76
圖6.12 進料流量增加10%之應答 (CS2)…………………………77
圖6.13 進料流量減少10%之應答 (CS2)…………………………78
圖6.14 產物濃度設定點改變之應答 (CS2)………………………79
圖6.15 進料Benzene增加5 mole %之應答 (CS3)………………80
圖6.16 進料Benzene減少5 mole %之應答 (CS3)………………81
圖6.17 進料流量增加10%之應答 (CS3)…………………………82
圖6.18 進料流量減少10%之應答 (CS3)…………………………83
圖6.19 產物濃度設定點改變之應答 (CS3)………………………84
圖6.20 進料Benzene增加5 mole %之應答 (CS4)………………85
圖6.21 進料Benzene減少5 mole %之應答 (CS4)……………….86
圖6.22 進料流量增加10%之應答 (CS4)…………………………87
圖6.23 進料流量減少10%之應答 (CS4)…………………………88
圖6.24 產物濃度設定點改變之應答 (CS4)………………………89
圖6.25 高濃度測試: 產物濃度設定點改變之應答 (CS3)……….90
圖6.26 高濃度測試: 產物濃度設定點改變之應答 (CS4)……….91
圖6.27 高濃度測試:
進料Benzene增加5 mole %之應答 (CS3)........................92
圖6.28 高濃度測試:
進料Benzene減少5 mole %之應答 (CS3)………………93

圖6.29 高濃度測試:
進料流量增加10%之應答 (CS3)………………………..94
圖6.30 高濃度測試:
進料流量減少10%之應答 (CS3)………………………..95
圖6.31 高濃度測試:
進料Benzene增加5 mole %之應答 (CS4)……………..96
圖6.32 高濃度測試:
進料Benzene減少5 mole %之應答 (CS4)……………..97
圖6.33 高濃度測試:
進料流量增加10%之應答 (CS4)………………………..98
圖6.34 高濃度測試:
進料流量減少10%之應答 (CS4)………………………..99
Abdul Mutalib, M. I. and R. Smith, ”Operation and Control of Dividing Wall
Distillation Columns: Part 1: Degrees of Freedom and Dynamic Simulation,”
Trans. IChemE., 76, Part A, 308 (1998).
Abdul Mutalib, M. I., A. O. Zeglam and R. Smith, ”Operation and Controll of Dividing Wall Distillation Columns: Part 2: Simulation and Pilot Plant Studies Using Temperature Control,” Trans.IChemE.,76, Part A, 319 (1998).
Adrian, T., H. Schoenmarkers and M. Boll, ”Model Predictive Control of Integrated
Unit Operation:Control of Dividing Wall Column,” Chem.Eng.Prog., 43, 347 (2003).
Amminudin, K.A., R. Smith, D.Y.-C. Thong and G. P. Towler, ”Design and Optimization of Fully Thermally Coupled Distillation Columns: Part 1:
Preliminary Design and Optimization Methodology,” Trans. IChemE., 79, Part A, 701 (2001).
Amminudin, K.A. and R. Smith, ”Design and Optimization of FullyThermally Coupled Distillation Columns: Part 2: Application of Dividing Wall Columns in Retrofit,” Trans. IChemE., 79, Part A, 716 (2001).
Astrom, K. J. and B. Wittenmark, Computer-Controlled Systems: Theory and Design, 3rd ed., Prentice-Hall, Inc. (1997).
Astrom, K. J. and T. J. McAvoy, “Intelligent Control,” J. Process Control, 2, 115 (1992).
Baughman, D. R. and Y.A. Liu, Neural Networks for Bioprocessing and Chemical Engineering, Academic Press, Inc., San Diego, 1995
Christiansen, A., Morud C.J. and Skogestad S., “Complex Distillation Arrangements:
Extending the Petlyuk Ideas,” Comput. Chem. Eng., 21, 237 (1997).
Dunnebier, G. and C. C. Pantelides, “Optimal Design Of Thermally Coupled Distillation Columns,” Ind. Eng. Chem. Res., 38,162 (1999).
Franks, R.G. E., Modeling and Simulation in Chemical Engineering, John Wiley & Sons, Inc., 1972.
Giroux, V.A.,” Fractionation Method and Apparatus” US patent 4230533, 1980.
Halvorsen, I. J. and S. Skogestad, “Optimizing Control of Petlyuk Distillation Understanding the Steady-State Behavior,” Comput. Chem. Eng., 21, 249 (1997).
Heida, B., G.Bohner and K. Kindler, “Consider Divided-Wall Technology for
Butadiene Extraction,” Hydrocarbon Processing, p. 50-B, (March, 2002).
Hernandez, S. and A. Jimenez, ”Design of Energy-Efficient Petlyuk Systems,”
Comput. Chem. Eng., 23, 1005 (1999).
Kim, Y. H., “Rigorous Design of Thermally Coupled Distillation Column,” J. Chem.
Eng. Jpn, 34, 236-243 (2001).
Kim, Y. H., “Structural Design and Operation of a Fully Thermally Coupled
Distillation Column,” J. Chem. Eng. Jpn, 85, 289 (2002).
Monro, D. A., “ Fractionation Apparatus and Method of Fractionation” US Patent
2134882, 1938.
Morris, A. J., G. A. Montague and M. J. Willis, “Artificial Neural Networks: Studies
in Process Modeling and Control,” Chem. Eng. Res. Develop., 72, 3 (1994).
Petlyuk, F. B., V. M. Platonov and D. M. Slavinskii , “Thermodynamically Optimal
Method for Separating Multicomponent Mixtures,” Intl. Chem. Eng., 5, 555 (1965).
Schultz, M. A., D. G. Stewart, J. M. Harris, S. P. Rosenblum, M. S. Shakur and D. E.
O’Brien, ”Reduce Costs With Dividing-Wall Columns,” UOP (2002).
Serra, M., A. Espuna, L. Puijaner, “ Control and Optimization of the Dividing Wall Column,” Chem. Eng. Pro., 38, 549 (1999).
Serra, M., M. Perrier, A. Espuna and L. Puijaner, “ Study of the Divided Wall Column Controllability Influence of Design and Operation,” Comput. Chem. Eng., 24, 901 (2000).
Shah, P., “Life Cycle Analysis of Dividing Wall Columns,” Hysys Co.
Smith, C. A., and A. B. Corripio, Principles and Practice of Automatic Process Control, 2nd. ed., John Wiley & Sons, Inc. (1997).
Smith, R., Chemical Process Design, McGraw-Hill, Inc., 1995.
Steacy, P.C., “Dividing Wall Fractionation Column Control System and Apparatus,” US Patent 6558515, 2003.
Triantafyllou, C. and R. Smith, “The Design and Optimisation of Fully Thermally
Coupled Distillation Columns,” Trans. IChemE., 70, Part A, 118 (1992).
Van Zile, C.P. and J. M. Harris, “Dividing Wall Column Control System,” US Patent 6551465, 2003.
Wright, R.O. and N. J. Elizabeth, “Fractionation Apparatus,” US Patent 2471134, 1949.
Yeh T. M., M. C. Huang and C. T. Huang, “Estimate of Process Composition and
Plantwide Control from Multiple Secondary Measurements Using Artificial neural Networks,” Comput. Chem. Eng., 27, 55 (2003).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top