跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:駱永建
研究生(外文):Luo, Yung-Chien
論文名稱:腎功能檢測中尿素與尿酸生化感測器之研究
論文名稱(外文):Urea and Uric Acid Biosensors for Renal Detection
指導教授:杜景順
指導教授(外文):Do, Jing-Shan
學位類別:博士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞: 尿素 尿酸 生化感測器 腎功能
外文關鍵詞:UreaUric AcidBiosensorRenal
相關次數:
  • 被引用被引用:4
  • 點閱點閱:880
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
尿素與尿酸為腎功能檢測與臨床醫療之重要的指標,本論文中分別製備不同聚苯胺(polyaniline, PANI)複合膜/Au為基礎的尿素感測電極與尿酸酵素/銥修飾碳之尿酸感測電極,作為感測尿素與尿酸之感測電極,探討製備所得電極之特性及其感測特性。
銨根離子為一非電化學活性物質,為尿素被尿素酵素水解後之代謝產物之一,藉由銨根離子之感測可定量尿素。文中分別以不同製備方式製備具有銨根離子選擇功能之聚苯胺複合膜,包括PANI-Nafion、PANI-PSSMA(poly(styrenesulfonate-co-maleic acid, sodium type))(I)、PANI-PSSMA(II)、PANI-PSSMA(III)、奈米結構PANI-PSSMA(IV)、奈米結構PANI-Nafion複合膜於Au上作為感測基礎電極,進行銨根離子感測特性之探討。發現製備所得之PANI(製備圈數=5)-Nafion/Au與奈米結構PANI(定電流聚合時間為30分鐘)-Nafion/Au對銨根離子感測靈敏度分別為100.4與836.39 A mM-1,偵測極限為0.025與0.005 mM。另一方面,在四種自制之PANI-PSSMA複合膜中,其中以奈米結構PANI-PSSMA(IV)複合膜電極對銨根離子感測靈敏度最高,在25C環境下,當銨根離子濃度範圍為0 ~ 1.0 mM時得到感測靈敏度為126.2 A mM-1。
分別以PANI(製備圈數=5)-Nafion(4 l (2 wt%))/Au與奈米結構PANI(定電流聚合時間為30分鐘)-Nafion(8 l (1 wt%))/Au為基礎電極,製備成尿素酵素感測電極。其中以澆鑄4 l之Nafion溶液混合160 U尿素酵素,澆鑄於奈米結構PANI-Nafion/Au基礎電極上,製備所得之尿素酵素感測電極對尿素的感測靈敏度為87.26 A mM-1,偵測極限可達到5 M。而利用4 l (2 wt%)戊二醛溶液混合320 U之尿素酵素於奈米結構之PANI-PSSMA(IV)/Au基礎電極上,對尿素感測靈敏度為52.02 A mM-1。
在尿酸感測器之研究中,以銥(20 wt%)修飾碳/碳/Au為基礎電極,在37C環境下,對過氧化氫之感測靈敏度為36.71 A mM-1,應答時間(t90)介於18.4 ~ 25秒,維他命C (AA)與葡萄糖對此種電極干擾極小。以戊二醛交聯16 U之尿酸酵素於銥(20 wt%)修飾碳/碳/Au基礎電極上,形成尿酸酵素/銥(20 wt%)修飾碳/碳/Au電極,在pH 7 PBS (phosphate buffer solution)與37C下,對尿酸感測靈敏度為23.32 A mM-1,此種尿酸酵素感測電極最低酵素負載量為2 U,對尿酸感測靈敏度為14.03 A mM-1。
直接型尿酸感測器是以銥(5 wt%)修飾碳作為電極,利用微脈衝伏安法(differential pulse voltammetry, DPV)發現AA之氧化電位為0.255 V(vs. Ag/AgCl),高於尿酸之氧化電位,因此在0.2 V的操作電壓下,對感測電極的干擾極小。而銥(5 wt%)修飾碳電極在pH 8 PBS與37C下,對尿酸感測靈敏度為1.08 A mM-1。利用銥(5 wt%)修飾碳電極在血清與血漿系統中進行感測,其結果發現此種電極可以直接用於人體血清與血漿中感測尿酸,血液中其他物質對感測電極干擾極小。
Urea and uric acid are the important indicators for the kidney diseases and clinic diagnosis. In this study, preparing urea and uric acid biosensors based on various polyaniline (PANI) conducting composite film/Au and iridium-modified carbon (Ir-C)/C/Au electrodes were carried out, respectively. And the properties of sensing electrodes and sensing characteristics were investigated.
Ammonium ion (NH4+) is a non-electroactive specie. And it is the major product from catalyzing urea by enzymatic reaction. Consequently, the detection of NH4+ could be used to quantify the urea. Therefore, the preparation of the various NH4+-selective sensing electrodes based on the PANI-Nafion, PANI-PSSMA(I), PANI-PSSMA(II), PANI-PSSMA(III), nano-structural PANI-PSSMA(IV) and nano-structural PANI-Nafion on the Au were employed as NH4+-sensing electrodes. The sensing properties for NH4+ were also obtained in this study. The sensitivity and detecting limit of 100.4 A mM-1 and 0.025 mM for NH4+, respectively, were found by using the PANI(cycle no.=5)-Nafion(casting 4 l (2 wt%))/Au as the working electrode. The NH4+-sensitive electrode based on nano-structural PANI-Nafion(casting 8 l (1 wt%))/Au was also employed. The sensitivity of 836.39 A mM-1 and detecting limit of 0.005 mM were found, respectively. And there are four kinds of PANI-poly(styrenesulfonate-co-maleic acid, sodium type) (PSSMA) to be fabricated in NH4+ sensing electrodes. The highest sensitivity of 126.2 A mM-1 was obtained within the NH4+ concentration range of 0 ~ 1.0 mM based on nano-structural PANI-PSSMA(16 l (0.5 wt%))(IV)/Au electrode at 25C.
Urea biosensor based on PANI(cycle no.=5)-Nafion(casting 8 l (1 wt%))/Au and nano-structural PANI(current density=80 A cm-2, 30 min)-Nafion(casting 8 l (1 wt%))/Au were fabricated in this study. The highest sensitivity of 87.26 A mM-1 and detecting limit of 5 M were found by using Nafion (urease, 160 U)/nano-structural PANI-Nafion/Au as working electrode. Also, cross linked urease (320 U) onto the nano-structural PANI-PSSMA(IV) by glutaraldehyde (GA) as cross-linker was used for sensing urea. The sensitivity of 52.02 A mM-1 was obtained in this study.
The sensitivity of 36.71 A mM-1 and response time (t90) between 18.4 and 25 s were found for sensing H2O2 based on Ir(20 wt%)-C/C/Au at 37C. And the interferences caused by ascorbic acid (AA) and glucose could be minimized. Cross linked uricase (16 U) on the Ir(20 wt%)-C/C/Au formed uricase/Ir(20 wt%)-C/C/Au UA-sensing electrode. The sensitivity of 23.32 A mM-1 was obtained in pH 7 PBS at 37C. And the sensitivity of 14.03 A mM-1 for sensing UA was obtained when the minimum enzyme loading of 2 U was cast on Ir(20 wt%)-C/C/Au
The UA sensor base on Ir(5 wt%)-C was employed in this work. The oxidative potential of 0.255 V (vs. Ag/AgCl) for AA by using differential pulse voltammetric (DPV) method was higher than the oxidative potential for UA. Therefore, the minimized interference by AA was demonstrated at the operating potential of 0.2 V. Using Ir(5 wt%)-C as UA-sensitive electrode, the sensitivity of 1.08 A mM-1 was found in pH 8 PBS at 37C. Furthermore, the Ir(5 wt%)-C electrode was employed to monitor UA in the serum and plasma. The sensing results were shown the Ir(5 wt%)-C could be used to sense UA directly in human serum and plasma, and the interference cased by other species in the blood was insignificant.
目錄
中文摘要 I
Abstract IV
目錄 VIII
表目錄 XVI
圖目錄 XVIII

第1章 緒論 1
1.1 腎臟功能之檢測 1
1.2 銨根離子感測器 3
1.3 尿素酵素與尿酸生化感測器 7
1.3.1 生化感測器 7
1.3.2 生化感測器之構造與原理 7
1.3.3 尿素酵素感測器 10
1.3.4 尿酸感測器 14
1.3.4.1 酵素型尿酸感測器 14
1.3.4.2 非酵素型尿酸感測器 17
1.3.4.3 銥修飾碳電極應用於生化感測器 22
1.4 共軛導電性高分子 23
1.4.1 共軛導電性高分子與聚苯胺 23
1.4.2 共軛導電性高分子之導電機制 25
1.5 聚苯胺之結構與聚合 28
1.5.1 聚苯胺之結構 28
1.6 研究動機 37
第2章 實驗程序與設備 39
2.1 實驗試劑與藥品 39
2.2 實驗設備與儀器 41
2.3 實驗程序與方法 42
2.3.1 PANI-Nafion/Au電極之製備 43
2.3.1.1 Au電極之製備 43
2.3.1.2 Nafion/Au電極之製備 46
2.3.1.3 PANI-Nafion/Au電極之製備 46
2.3.2 PANI-PSSMA/Au電極之製備 49
2.3.2.1 PANI-PSSMA(I)/Au電極之製備 49
2.3.2.2 PANI-PSSMA(II)/Au電極之製備 51
2.3.2.3 PANI-PSSMA(III)/Au電極之製備 52
2.3.2.4 製備PANI-PSSMA(IV)/Au電極 53
2.3.2.5 尿素酵素/PANI-Nafion/Au電極與尿素酵素/PANI-PSSMA(IV)/Au電極之製備 54
2.3.3 製備銥(20 wt%)修飾碳/碳/Au與尿酸酵素/銥(20 wt%)修飾碳/碳/Au感測電極 55
2.3.3.1 (20 wt%)修飾碳/碳/Au電極之製備 55
2.3.3.2 尿酸酵素/銥(20 wt%)修飾碳/碳/Au電極之製備 57
2.3.4 銥(5 wt%)修飾碳感測電極之製備 59
2.3.5 製備所得電極之性質分析 61
2.4 尿素生化感測器之感測性質測定 62
2.4.1 NH4+感測性質測定 62
2.4.2 尿素感測性質測定 62
2.5 尿酸生化感測器感測性質之測定 63
2.5.1 H2O2感測性質測定 63
2.5.2 尿酸感測性質測定 63
2.6 非酵素直接式尿酸感測器感測性質測定 64
第3章 尿素生化感測器 67
3.1 感測電極之製備與性質分析 67
3.1.1 PANI-Nafion/Au複合電極之製備與性質分析 68
3.1.1.1 PANI-Nafion複合膜電極之製備 68
3.1.1.2 PANI-Nafion複合膜之表面形態分析 69
3.1.2 PANI-PSSMA(I)/Au複合電極之製備與性質分析 72
3.1.2.1 PANI-PSSMA(I)複合膜電極之製備 72
3.1.2.2 PANI-PSSMA(I)複合膜之表面形態分析 76
3.1.3 PANI-PSSMA(II)/Au複合電極之製備與性質分析 76
3.1.3.1 PANI-PSSMA(II)複合膜之製備 78
3.1.3.2 PANI-PSSMA(II)複合膜之表面形態分析 78
3.1.4 PANI-PSSMA(III)/Au複合電極之製備與性質分析 81
3.1.4.1 PANI-PSSMA(III)複合膜之製備 81
3.1.4.2 PANI-PSSMA(III)複合膜之表面形態分析 83
3.1.5 FTIR之化學組態分析 83
3.1.6 以X光光電子能譜儀分析複合膜 87
3.1.7 奈米結構PANI-PSSMA(IV)/Au複合電極之製備與性質分析 90
3.1.7.1 奈米結構PANI-PSSMA(IV)複合膜之製備 90
3.1.7.2 PANI-PSSMA(IV)複合膜之表面形態 93
3.1.8 奈米結構PANI-Nafion/Au複合電極之製備與性質分析 97
3.1.8.1 奈米結構PANI-Nafion複合電極之製備 97
3.1.8.2 奈米結構PANI-Nafion複合膜之表面形態分析 100
3.2 複合電極之銨根離子與尿素感測性質之探討 102
3.2.1 以PANI-Nafion/Au為基礎電極之感測性質 102
3.2.1.1 銨根離子與尿素之感測機構 102
3.2.1.2 銨根離子之感測性質 103
3.2.1.3 尿素之感測 117
3.2.2 以PANI-PSSMA(I)/Au為基礎電極之感測性質 123
3.2.2.1 銨根離子之摻雜反應 123
3.2.2.2 銨根離子之感測性質 124
3.2.3 ANI-PSSMA(II)/Au複合電極之感測性質 140
3.2.3.1 銨根離子之感測性質 140
3.2.4 PANI-PSSMA(III)/Au複合電極之感測性質 143
3.2.4.1 銨根離子感測性質 145
3.2.5 PANI-PSSMA(IV)/Au複合電極之感測性質 161
3.2.5.1 銨根離子感測性質 161
3.2.5.2 尿素之感測性質 185
3.2.6 奈米結構PANI-Nafion/Au複合電極之感測性質 190
3.2.6.1 銨根離子感測性質 190
3.2.6.2 尿素感測性質 209
第4章 尿酸生化感測器 213
4.1 銥修飾碳電極上過氧化氫的電化學反應性質 214
4.1.1 循環伏安圖譜 214
4.1.2 銥(5 wt%)修飾碳/碳/黃金感測電極的極化曲線 216
4.1.3 不同銥-碳重量組成對過氧化氫感測電位之影響 218
4.1.4 過氧化氫在銥(5 wt%)-碳的電化學反應特性 220
4.2 銥(5 wt%)修飾碳/碳/黃金電極之感測性質 222
4.2.1 H2O2的感測性質 222
4.2.2 尿酸之感測特性 225
4.3 銥(20 wt%)修飾碳/碳/黃金電極之感測性質 228
4.3.1 電極中碳黑與銥修飾碳層厚度對H2O2的感測性質的影響 228
4.3.2 電極中碳黑與銥修飾碳層厚度對尿酸感測性質的影響 232
4.3.3 溫度感測過氧化氫感測性質之影響 235
4.4 尿酸酵素/銥(20 wt%)-碳/碳/黃金當電極之尿酸感測特性 242
4.4.1 溫度對尿酸感測性質之影響 245
4.4.2 尿酸酵素負載量之影響 249
4.4.3 pH值之影響 252
4.5 銥(5 wt%)-碳感測電極之電化學感測性質 254
4.5.1 尿酸在銥(5 wt%)-碳的電化學反應特性 254
4.5.2 感測時間對UA感測性質之影響 256
4.5.3 銥(5 wt%)-碳電極之感測性質 258
4.5.3.1 UA的感測性質 258
4.5.3.2 CV法感測尿酸 262
4.5.3.3 維他命C與葡萄糖之干擾 262
4.5.3.4 CV法與Differential Pulse Voltammetric(DPV)法氧化尿酸與維他命C 267
4.5.3.5 pH值之影響 272
4.5.3.6 在血清與血漿系統中進行感測 274
第5章 綜合討論 278
5.1 銨根離子與尿素感測器 278
5.1.1 PANI-Nafion與奈米結構PANI-Nafion複合膜電極對銨根離子感測之比較 278
5.1.2 PANI-PSSMA(I)、(II)、(III)與PANI-(IV)複合膜電極對銨根離子感測之比較 280
5.1.3 PANI-Nafion複合膜與PANI-PSSMA複合膜系統對銨根離子感測性質之比較 282
5.1.4 PANI-Nafion複合膜與PANI-PSSMA複合膜系統對尿素感測性質之比較 287
5.2 尿酸感測器 291
第6章 結論與建議 295
參考文獻 300
1. Koncki, R., Radomska, A., Głąb, S., “Potentiometric determination of dialysate urea nitrogen”, Talanta, 52, 13-17 (2000).
2. Eggenstein, C., Borchardt, M., Diekmann, C., Gründig, B., Dumschat, C., Cammann, K., Knoll, M., Spener, F., “A Disposable Biosensor for Urea Determination in Blood Based on an Ammonium-Sensitive Transducer”, Biosens. Bioelectron., 14, 33-41 (1999).
3. Schneider, J., Gründig, B., Renneberg, R., Cammann, K., Madaras, M.B., Buck, R.P., Vorlop, K.D., “Hydrogel matrix for threee enzyme entrapment in creatine/creatinine amperometric biosensing”, Anal. Chim. Acta, 325, 161-167 (1996).
4. 黃賢堅,”從無氧性與有氧性運動中探討Alanine、Urea、Lactic acid及Glucose的相關性”,台灣師大體育研究,第3期,179-196 (1997).
5. Wałcerz, I., Głab, S., Koncki, R., “Potentiometric enzyme electrode in a flow injection system for the determination of urea in human serum samples”, Anal. Chim. Acta, 369, 129-137 (1998).
6. Liu, R., Sun, B., Liu, D., Sun, A., “Flow Injection Gas-Diffusion Amperometric Determination of Trace Amounts of Ammonium Ions with a Cupric Hexacyanoferrate”, Talanta, 43, 1049-1054 (1996).
7. Strömberg, N., Hulth, S., “Ammonium Selective Fluorosensor Based on the Principles of Coextraction”, Anal. Chim. Acta, 443, 215-225 (2001).
8. Strömberg, N., Hulth, S., “Afluorescence Ratiometric Detection Scheme fro Ammonium Ions Based on the Solvent Sensitive Dye MC 540”, Sens. Actuators B, 90, 308-318 (2003).
9. Wang, E., Zhu, L., Ma, L., Patel, H., “Optical Sensors for Sodium, Potassium and Ammonium Ions Based on Lipophilic Fluorescein Anionic Dye and Neutral Carriers”, Anal. Chim. Acta, 357, 85-90 (1997).
10. Reichert, J., Sellien, W., Ache, H.J., “Development of a Fiber-Optic Sensor for the Detection of Ammonium in Environmental Waters”, Sens. Actuators A, 26, 481-482 (1991).
11. Nakata, R., Kawamura, T., Sakashita, H. Nitta, A., “Determination of Ammonium Ion in a Flow-Injection System with a Gas-Diffusion Membrane: Selection of Optimal Conditions for the pH Indicator”, Anal. Chim. Acta, 208, 81-91 (1988).
12. Schulze, G., Liu, C.Y., Brodowski, M., Elsholz, O., Frenzel, W., Möller, J., “Different Approaches to the Determination of Ammonium Ions at Low Levels by Flow Injection Analysis”, Anal. Chim. Acta, 214, 121-136 (1988).
13. Abass, A.K., Hart, J.P., Cowell, D.C., Chappell, A., “Development of an Amperometric Assay for NH4+ Based on a Chemically Modified Screen-printed NAHD Sensor”, Anal. Chim. Acta, 373, 1-8 (1998).
14. Bertocchi, P., Compagnone, D., Palleschi, G., “Amperometric Ammonium Ion and Urea Determination with Enzyme-Based Probes”, Biosens. Bioelectron., 11, 1-10 (1996).
15. Senillou, A., Jaffrezic-Renault, N., Martelet, C., Cosnier, S., “A Miniaturized Urea Sensor Based on the Integration of Both Ammonium Based Urea Enzyme Field Effect Transistor and a Reference Field Effect Transistor in a Single Chip”, Talanta, 50, 219-226 (1999).
16. Heng, L.Y., Alva, S., Ahmad, M., “Ammonium Ion Sensor Based on Photocured and Self-Plasticising Acrylic Films for the Analysis of Sewage”, Sens. Actuators B, 98, 160-165 (2004).
17. Pandey, P.C., Singh, G., “Tetraphenylborate Doped Polyaniline Based Novel pH Sensor and Solid-State Urea Biosensor”, Talanta, 55, 773-782 (2001).
18. Saurina, J., Hernández-Cassou, S., Alegret, S., Fàbregas, E., “Determination of Lysine in Pharmaceutical Samples Containing Endogenous Ammonium Ions by Using a Lysine Oxidase Biosensor Based on an All-Solid-State Potentiometric Ammonium Electrode”, Biosens. Bioelectron., 14, 67-75 (1999).
19. Ikeda, M., Hachiya, H., Ito, S., Asano, Y., Imato, T., “Development of Long-Term Stable Ammonium Ion Sensor in Conjunction with a Microbial Membrane”, Biosens. Bioelectron., 13, 531-537 (1998).
20. Hamlaoui, M.L., Reybier, K., Marrakchi, M., Jaffrezic-Renault, N., Martelet, C., Kherrat, R., Walcarius, A., “Development of a Urea Biosensor Based on a Polymeric Membrane Including Zeolite”, Anal. Chim. Acta, 466, 39-45 (2002).
21. Hamlaoui, M.L., Kherrat, R., Marrakchi, M., Jaffrezic-Renault, N., Walcarius, A., “Development of an Ammonium ISFET Sensor with a Polymeric Membrane Including Zeolite”, Mater. Sci. Eng. C, 21, 25-28 (2002).
22. Koncki, R., Głab, S., Dziwulska, J., Palchetti I., Mascini, M., “Disposable Strip Potentiometric Electrodes with Solvent-Polymeric Ion-Selective Membranes Fabricated Using Screen-Printing Technology”, Anal. Chim. Acta, 385, 451-459 (1999).
23. Hauser, P.C., Tan, S.S., Cardwell, T.J., Cattrall, R.W., Hamilton, I. C., “Versatile Manifold for the Simultaneous Determination of Ions in Flow Injection Analysis”, Analyst, 113, 1551-1555(1988).
24. Shen, H., Cardwell, T.J., Cattrall, R.W., “Determination of Ammonia in Waste Waters by a Differential pH Method Using Flow Injection Potentiometry and a Nonactin-Based Sensor, Analyst, 122, 89-93 (1997).
25. Wróblewski, W., Chudy, M., Dybko, A., Brzózka, Z., “NH4+-Sensitive Chemically Modified Field Effect Transistors Based on Siloxane Membranes for Flow-Cell Applications”, Anal. Chim. Acta, 401, 105-110 (1999).
26. Kazanskaya, N., Kukhtin, A., Manenkova, M., Reshetilov, N., Yarysheva, L., Arzhakova, O,. Volynskii, A., Bakeyev, N., “FET-Based Sensors with Robust Photosensitive Polymer Membranes for Detection of Ammonium Ions and Urea”, Biosens. Bioelectron., 11, 253-261 (1996).
27. Senillou, A., Jaffrezic-Renault, N., Martelet, C., Griffe, F., “A Miniaturized Ammonium Sensor Based on the Integration of Both Ammonium and Reference FETs in a Single Chip”, Mater. Sci. Eng. C, 6 59-63 (1998).
28. Twu, H.S., Ling, T.R., Chou, T. C., Yang, M.C., “Ultrasonic Irradiation Eeffect in the Impregnation-Reduction Process of Preparing Pt/Nafion® NH4+ Sensor”, Ultrason. Sonochem., 8, 41-47 (2001).
29. Luo, Y.C., Do, J.S., “Urea Biosensor Based on PANI(urease)-Nafion/Au Composite Electrode”, Biosens. Bioelectron., 20, 15-23 (2004).
30. Strehlitz, B., Gründig, B., Kopinke, H., “Sensor for Amperometric Determination of Ammonia and Ammonia-Forming Enzyme Reactions”, Anal. Chim. Acta, 403, 11-23 (2000).
31. Cho W.J., Huang, H.J., “An Amperometric Urea Biosensor Based on a Polyaniline-Perfluorosulfonated Ionomer Composite Electrode”, Anal. Chem., 70, 3946-3951(1998).
32. Shih, Y.T., Huang, H.J., “A Creatinine Deiminase Modified Polyaniline Electrode for Creatinine Analysis”, Anal. Chim. Acta, 392, 143-150 (1999).
33. Walcarius, A., Vromman, V., Bessiere, J., “Flow Injection Indirect Amperometric Detection of Ammonium Ions Using a Clinoptilolite-Modified Electrode, Sens. Actuators B, 56, 136-143 (1999).
34. Pan, X., Kan, J. Yuan, L., “Polyaniline Glucose Oxidase Biosensor Prepared with Template Process”, Sens. Actuators B, 102, 325-330 (2004).
35. Turner, A.P.F. Karube, I. and G. S. Wilson, “Biosensors: Fundamentals and Applications”, Oxford University Press, 1989.
36. Osaka, T., Komaba, S., Seyama, M., Tanabe, K., “High-sensitivity urea sensor based on the composite film of electroinactive polypyrrole with polyion complex”, Sens. Actuators B, 35-36, 463-369 (1996).
37. Boubriak, O.A., Soldatkin, A.P., Starodub, N.F., Sandrovsky, A.K., El’skaya, A.K., “Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor”, Sens. Actruators B, 26-27, 429-431 (1995).
38. Pizzariello, A., Stredanský, M., Stredanská, S., Miertuš, S., “Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator”, Talanta, 54, 763-772 (2001).
39. Liu, D., Ge, K., Chen, K., Nie, L., Yao, S., “Clinical analysis of urea in human blood by coupling a surface acoustic wave sensor with urease extracted from pumpkin seeds”, Anal. Chim. Acta, 307, 61-69 (1995).
40. Connolly, P., “Clinical Diagnostics Opportunities for Biosensors and Bioelectronics”, Biosens. Bioelectron., 10, 1-6 (1995).
41. Rodriguez-Mozaz, S,. López de Alda, M.J., Marco, M.P., Barceló, D., “Biosensors for environmental Monitoring a Global Prespective”, Talanta, 65, 291-297 (2005).
42. Rogers, K.R., “Biosensors for Environmental Applications”, Biosens. Bioelectron., 10, 533-541 (1995).
43. Verma, N., Singh, M., “A Disposable Microbial Based Biosensor for Quality Control in Milk”, Biosens. Bioelectron., 18, 1210-1224 (2003).
44. Puig-Lleixà, C., Jiménez, C., Alonso, J., Bartrolí, J., “Polyurethane-Acrylate Photocurable Polymeric Membrane for Ion-Sensitive Field-Effect Transistor Based Urea Biosensors”, Anal. Chim. Acta, 389, 179-188 (1999).
45. Komaba, S., Seyama, M., Momma, T., Osaka, T., “Potentiometric Biosensor for Urea Based on Electropolymerized Electroinactive Polypyrrole”, Electrochim. Acta, 42, 383-388 (1997).
46. Mizutani, F., Yabuki, S., Sato, Y., “Voltammetric Enzyme Sensor for Urea Using Mercaptohydroquinone-Modified Gold Electrode as the Base Transducer”, Biosens. Bioelectron., 12, 321-328 (1997).
47. Senillou, A., Jaffrezic-Renault, N., Martelet, C., Cosnier, S., “A Miniaturized Urea Sensor Based on the Integration of Both Ammonium Based Urea Enzyme Field Effect Transistor and a Reference Field Effect Transistor in a Single Chip“, Talanta, 50, 219-226 (1999).
48. Kazanskaya, N., Kukhtin, A., Manenkova, M., Reshetilov, N., Yarysheva, L., Arzhakova, O., Volynskii, A., and Bakeyev, N., “FET-Based Sensors with Robust Photosensitive Polymer Membranes for Detection of Ammonium Ions and Urea”, Biosens. Bioelectron., 11, 253-261 (1996).
49. Hamlaoui, M.L., Reybier, K., Marrakchi, M., Jaffrezic-Renault, N., Martelet, C., Kherrat, T., Walcarius, A., “Development of a Urea Biosensor Based on a Polymeric Membrane Including Zeolite”, Anal. Chim. Acta, 466, 39-45 (2002).
50. Pandey, P.C., Singh, G., “Tetraphenylborate Doped Polyaniline Based Novel pH Sensor and Solid-State Urea Biosensor”, Talanta, 55, 773-782 (2001).
51. Vostiar, I., Tkac, J., Sturdik, E., Gemeiner, P., “Amperometric Urea Biosensor Based on Urease and Electropolymerized Toluidine Blue Dye as a pH-Sensitive Redox Probe”, Bioelectrochem., 56, 113-115 (2002).
52. Stred’anský, M., Pizzariello, A., Stred’anská, S., Miertuš, S., “Amperometric pH-Sensing Biosensors for Urea, Penicillin, and Oxalacetate”, Anal. Chim. Acta, 415, 151-157 (2000).
53. Adeloju, S.B., Shaw, S.J., Wallace, G.G., “Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor”, Anal. Chim. Acta, 341, 155-160 (1997).
54. Kanungo, M., Kumar, A., Contractor, A.Q., “Microtubule Sensors and Sensor Array Based on Polyaniline Synthesized in the Presence of Poly(styrene sulfonate)”, Anal. Chem., 75, 5673-5679 (2003).
55. Martinez-Pérez, D., Ferrer, M.L., Reyes Mateo, C., “A reagent less fluorescent sol-gel biosensor for uric acid detection in biological fluids”, Anal. Biochem., 322, 238-242 (2003).
56. Zhang, Y.Q., Shen, W.D., Gu, R.A., Zhu, J., Xue, R.Y., “Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane”, Anal. Chim. Acta, 369, 123-128 (1998).
57. Huang, S.H., Shih, YC., Wu, C.Y., Yuan, C.J., Yang, Y.S., Li, Y.-K., Wu, T.K., “Detection of serum uric acid using the optical polymeric enzyme biochip system”, Biosens. Bioelectron., 19, 1627-1633 (2004).
58. Sántha, H., Dobay, R,. Harsányi, G., “Amperometric uric acid biosensors fabricated of various types of uricase enzymes”, IEEE Sens. J., 3, 282-287 (2003).
59. Wu, F., Huang, Y., Li, Q., “Animal tissue-based chemiluminescence sensing of uric acid”, Anal. Chim. Acta, 536, 107-113 (2005).
60. Matos, R.C., Augelli, M.A., Lago, C.L., Angnes, L., “Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium”, Anal. Chim. Acta, 404, 151-157 (2000).
61. Miland, E., Miranda, Ordieres, A.J., Tuñón Blanco, P., Smyth, M.R., Fágáin, C.Ó., “Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid”, Talanta, 43, 785-796 (1996).
62. Nanjo, M., Guilbault, G.G., “Enzyme electrode sensing oxygen for uric acid in serum and urine”, Anal. Chem., 46, 1769-1772 (1974).
63. Uchiyama, S., Shimizu, H. Hasebe, Y., “Chemical amplification of uric acid sensor responses by dithiothreitol”, Anal. Chem., 66, 1873-1876 (1994).
64. Shimohigoshi, M., Karube, I., “Development of uric acid and oxalic acid sensors using a bio-thermochip”, Sens. Actuators B, 30, 17-21 (1996).
65. Kuwabata, S., Nakaminami, T., Ito, S.I., Yoneyama, H., “Preparation and properties of amperometric uric acid sensors”, Sens. Actuators B, 52, 71-77 (1998).
66. Shi, K., Shiu, K.K., “Determination of uric acid at electrochemically activated glassy carbon electrode”, Electroanal., 13, 1319-1325 (2001).
67. Rubianes, M.D., Rivas, G.A., “Carbon nanotubes paste electrode”, Electrochem. Commun., 5, 689-694 (2003).
68. Aguilar, R., Dávila, M.M., Elizalde, M.P., Mattusch, J., Wennrich,,R., “Capability of a carbon-polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid”, Electrochim. Acta, 49, 851-859 (2004).
69. Matos, R.C., Angnes, L., Araújo, M.C.U. Saldanha, T.C.B., “Modified microelectrodes and multivariate calibration for flow injection amperometric simultaneous determination of ascorbic acid, dopamine, epinephrine and dipyrone”, Analyst, 125, 2011-2015 (2000).
70. Ren, W., Luo, H.Q., Li, N.B., “Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid”, Biosen. Bioelectron., 21, 1086-1092 (2006).
71. Zheng, L., Wu, S., Lin, X., Nie, L., Rui, L., “Selective determination of uric acid by using a -cyclodextrin modified electrode”, Electroanal., 13, 1351-1354 (2001).
72. Wang, S., Lu, L., Lin, X., “A selective voltammetric method for uric acid detection at a glassy carbon electrode modified with electrodeposited film containing DNA and Pt-Fe(III) nanocomposites”, Electroanal., 16, 1734-1738 (2004).
73. Roy, P.R., Okajima, T., Ohsaka, T., “Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode”, J. Electroanal. Chem., 561, 75-82 (2004).
74. Gao, Z., Siow, K.S., Ng, A., Zhang, Y., “Determination of ascorbic acid in a mixture of ascorbic acid and uric acid at a chemically modified electrode”, Anal. Chim. Acta, 343, 49-57 (1997).
75. Raj, C.R., Ohsaka, T., “Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol”, J. Electroanal. Chem., 540, 69-77 (2003).
76. Premkumar, J., Khoo, S.B., “Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes”, J. Electroanal. Chem., 576, 105-112 (2005).
77. Zhang, L., Lin, X., “Covalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid”, Analyst, 126, 367-370 (2001).
78. Tian, F., Zhu, G., “Sol-gel derived iridium composite glucose biosensor”, Sens. Actuators B, 86, 266-270 (2002).
79. Rubianes, M.D., Rivas, G.A., “Amperometric biosensor for phenols and catechols based on iridium-polyphenol oxidase-modified carbon paste”, Electroanal., 12, 1159-1162 (2000).
80. You, T., Niwa, O., Kurita, R., Iwasaki, Y., Hayashi, K., Suzuki, K., Hirono, S., “Reductive H2O2 detection at nanoparticle iridium/carbon film electrode and its application as L-glutamate enzyme sensor”, Electroanal., 16, 54-59 (2004).
81. Rodriguez, M.C., and Rivas, G.A., “Glucose biosensor prepared by the deposition of iridium and glucose oxidase on glassy carbon transducer”, Electroanal., 11, 558-564 (1999).
82. Rodríguez, M.C., and Rivas, G.A., “An enzymatic glucose biosensor based on the codeposition of rhodium, iridium, and glucose oxidase onto a glassy carbon transducer”, Anal. Letters, 34(11), 1829-1849 (2001).
83. Wang, J., Rivas, G., Chicharro, M., “Glucose microsensor based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber electrodes”, J. Electroanal. Chem., 439, 55-61 (1997).
84. Yang, H., Kang, S.K., Choi, C.A., Kim, H., Shin, D.H., Kim, Y.S., Kim, Y.T., “An iridium oxide reference electrode for use in microfabricated biosensors and biochips”, Lab Chip, 4, 42-46 (2004).
85. 魏喬建,”聚苯胺/不鏽鋼電極之製備動力與其在鋰電池中之充放電行為”,東海大學化學工程所碩士論文,2001年。
86. Kitani, A., Kaya, M., Sasaki, K., “Performance Study of Aqueous Polyaniline Batteries”, J. Electrochem. Soc., 133, 1069-1073 (1986).
87. 林建中,“高分子材料性質與應用”,高立圖書有限公司,P.450,87年。
88. The 2000 Nobel Prize in Chemistry, The Royal Swedish Scademy of Sciences, October 10, 2000.
http://www.nobel.se/chemistry/laureates/2000/public.html.
89. 吳詩澤,“電聚合聚苯胺複合膜與其在鋰二次電池之應用”,東海大學化學工程所碩士論文,1999年。
90. MacDiarmid, A. G., Epstein, A. J., “The Polyanilines: Process Molecular Weight, Oxidation Date and Derivatives”, Faraday Discuss Chem. Soc., 88, 317(1989).
91. Syed, A. A., Dinesan, M. K., “Review: Polyaniline – A Novel Polymeric Material”, Talanta., 38(8), 815(1991).
92. Lin, S.M., Wen, T.C., “Electrochemical Synthesis and Properties on Thermally Prepared RuO2 Electrodes”, Electrochim. Acta, 39, 393-400 (1994).
93. Nunziante, P., Pistoia, G., “Factors Affecting the Growth of Thick Polyaniline Films by the Cyclic Voltammetry Technique”, Electrochim. Acta, 34, 223-228 (1989).
94. Arsov, L.D., Plieth, W., Kossmehl, G., “Electrochemical and Raman Spectroscopic Study of Polyaniline; Influence of the Potential on the Degradation of Polyaniline”, J. Solid State Electrochem., 2, 355-361(1998).
95. Motheo, A.J., Santos Jr, J.R., Venancio, E.C., Mattoso, L.H.C., “Influence of Different Types of Acidic Dopant on the Electrodeposition and Properties of Polyaniline Films”, Polymer, 39, 6977-6982 (1998).
96. Gao, M., Dai, S.H.L., Wallace, G., Gao, R., Wang, Z., “Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers”, Angew. Chem., 39, 3664-3667 (2000).
97. Fiordiponti, P., Pistoia, G., “An Impedance Study of Polyaniline Films in Aqueous and Organic Solutions”, Electrochim. Acta, 34, 215-221 (1989).
98. Glarum, S.H., Marshall, J.H., “The Impedance of Poly(aniline) Electrode Films”, J. Electrochem. Soc., 134, 142-147 (1987).
99. Aoki, K., Cao, J., Hoshino, Y., “Coulombic irreversibility at Polyaniline-Coated Electrodes by Electrochemical Switching”, Electrochim. Acta, 38, 1711-1716 (1993).
100. Rajendra Prasad, K., Munichandraiah, N., “Fabrication and Evaluation of 450 F Electrochemical Redox Supercapacitors Using Inexpensive and High-Performance, Polyaniline Coated, Stainless-Steel Electrodes”, J. Power Sources, 112, 443-451 (2002).
101. 李忠哲,聚苯胺之製備與性質探討及其鋰二次電池之應用,東海大學化學工程研究所碩士論文,(1998).
102. 李美嬅,聚苯胺複合膜在非水溶液中之性質分析與在鋰二次電池中充放電性質,東海大學化學工程研究所碩士論文,(2001).
103. Osaka, T., Nakajima, T., Shiota, K., Momma, T., “Electroactive Polyaniline Film Deposited from Nonaqueous Media”, J. Electrochem. Soc., 138, 1853-1858 (1991).
104. Guo, M., Chen, J., Li, J., Tao, B., Yao, S., “Fabrication of Polyaniline/Carbon Nanotube Composite Modified Electrode and Its electrocatalytic Property to the Reduction of Nitrite”, Anal. Chim. Acta, 532, 71-77 (2005).
105. Liang, L., Liu, J., Windisch Jr, C.F., Exarhos, G.J., Liu, Y., “Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires”, Angew. Chem., 41, 3665-3668 (2002).
106. Liu, J., Lin, Y., Liang, L., Voigt, J.A., Huber, D.L., Tian, A.R., Coker, E., Mckenzie, B., Mcdermott, M.J., “Templateless Assembly of Molecularly Aligned Conductive Polymer Nanowire: A New Approach for Oriented Nanostructures”, Chem. Eur. J., 9, 604-611 (2003).
107. Taguchi, S., Tanaka, T., “Fibrous Polyaniline as Positive Active Material in Lithium Secondary Batteries”, J. Power Sources, 20, 249-252 (1987).
108. Osaka, T., Ogano, S., Naoi, K., Oyama, N., “Electrochemical Polymerization of Electriactive Polyaniline in Nonaqueous Solution and Its Application in Rechargeable Lithium Batteries”, J. Electrochem. Soc., 136, 306-309 (1989).
109. Stejskal, J., Sapurina, I., Prokeš, J., Zemek, J., “In-Situ Polymerized Polyaniline Films”, Synth. Met., 105, 195-202 (1999).
110. Venancio, E.C., Costa, C.A.R., Machado, S.A.S., Motheo, A. J., “AFM Study of the Initial Stages of Polyaniline Growth on ITO Electrode”, Electrochem. Commun., 3, 229-223 (2001).
111. Mandić, Z., Duić, L., Kovačiček, F., “The Influence of Counter-Ions on Nucleation and Growth of Electrochemically Synthesized Polyaniline Film”, Electrochim. Acta, 42, 1389-1402 (1997).
112. McManus, P.M., Cushaman, R.J., Yang, S.C., “Influence of Oxidation and Protonation on the Electrical Conductivity of Polyaniline”, J. Phys. Chem., 91, 744-747 (1987).
113. Kitani, A., Izumi, J., Yano, J., Hiromoto, Y., Sasaki, K., “Basic Behaviors and Properties of the Electrodeposited Polyaniline”, Bull. Chem. Soc. Jpn., 57, 2254-2257 (1984).
114. Murugesan, R., Subramanian, E., “Effect of Organic Dopants on Electrodeposition and Characteristics of Polyaniline Under the Varying Influence of H2SO4 and HClO4 Electrolyte Media”, Mater. Chem. Phys., 80, 731-739 (2003).
115. Ivanov, S., Mokreva, P., Tsakova, V., Terlemezyan, L., “Electrochemical and Surface Structural Characterization of Chemically and Electrochemically Synthesized Polyaniline Coatings”, Thin Solid Films, 441, 44-49 (2003).
116. Guo, X.W., Jiang, Y.F., Zhai, C.Q., Lu, C., Ding, W. J., “Preparation of Even Polyaniline Film on Magnesium Alloy by Pulse Potentiostatic Method”, Synth. Met., 135-136, 169-170 (2003).
117. Tang, Z., Liu, S., Wang, Z., Dong, S., Wang, E., “Electrochemical Synthesis of Polyaniline Nanoparticles”, Electrochem. Commun., 2, 32-35 (2000).
118. Jović, V.D., Trišović, T., Jović, B.M., Vojnović, M., “The Morphologh of Different Metals Electrodeposited onto Polyaniline Films”, J. Electroanal. Chem., 408, 149-155 (1996).
119. Aoki, K., Tano, S., “Simultaneous Occurrence of Polymerization and Decomposition of Polyaniline Films”, Electrochim. Acta, 50, 1491-1496 (2005).
120. 林智汶, “有機材料氣體感測器之應用”, 化工技術, 83期, 136-144 (2000).
121. Osaka, T., Nakajima, T., Shiota, K., Momma, T., “Electroactive polyaniline film deposited from nonaqueous media”, J. Electrochem. Soc., 138, 2853-2858 (1991).
122. Trivedi, D.C., “Influence of the anion on polyaniline”, J. Solid State Electrochem., 2, 85-87 (1998).
123. Tang, H., Kitani, A., Shiotani, M., “Effects of anions on electrochemical formation and overoxidation of polyaniline”, Electrochim. Acta, 41, 1561-1567 (1996).
124. Baughman,R.H., “Conducting polymer artificial muscles”, Synth. Met., 78, 339-353 (1996).
125. Crouch, E., Cowell, D.C., Hoskins, S., Pittson, R.W., Hart, J.P., “A novel, disposalble, screen-printed amperometric biosensor for glucose in serum fabrication using a water-based carbon ink”, Biosens. Bioelectron., 21, 712-718 (2005).
126. Wilson, R., Turner, A.P.F., “Glucose-oxidase—an ideal enzyme”, Biosens. Bioelectron., 7(3), 165-185 (1992).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top