1. Koncki, R., Radomska, A., Głąb, S., “Potentiometric determination of dialysate urea nitrogen”, Talanta, 52, 13-17 (2000).
2. Eggenstein, C., Borchardt, M., Diekmann, C., Gründig, B., Dumschat, C., Cammann, K., Knoll, M., Spener, F., “A Disposable Biosensor for Urea Determination in Blood Based on an Ammonium-Sensitive Transducer”, Biosens. Bioelectron., 14, 33-41 (1999).
3. Schneider, J., Gründig, B., Renneberg, R., Cammann, K., Madaras, M.B., Buck, R.P., Vorlop, K.D., “Hydrogel matrix for threee enzyme entrapment in creatine/creatinine amperometric biosensing”, Anal. Chim. Acta, 325, 161-167 (1996).
4. 黃賢堅,”從無氧性與有氧性運動中探討Alanine、Urea、Lactic acid及Glucose的相關性”,台灣師大體育研究,第3期,179-196 (1997).5. Wałcerz, I., Głab, S., Koncki, R., “Potentiometric enzyme electrode in a flow injection system for the determination of urea in human serum samples”, Anal. Chim. Acta, 369, 129-137 (1998).
6. Liu, R., Sun, B., Liu, D., Sun, A., “Flow Injection Gas-Diffusion Amperometric Determination of Trace Amounts of Ammonium Ions with a Cupric Hexacyanoferrate”, Talanta, 43, 1049-1054 (1996).
7. Strömberg, N., Hulth, S., “Ammonium Selective Fluorosensor Based on the Principles of Coextraction”, Anal. Chim. Acta, 443, 215-225 (2001).
8. Strömberg, N., Hulth, S., “Afluorescence Ratiometric Detection Scheme fro Ammonium Ions Based on the Solvent Sensitive Dye MC 540”, Sens. Actuators B, 90, 308-318 (2003).
9. Wang, E., Zhu, L., Ma, L., Patel, H., “Optical Sensors for Sodium, Potassium and Ammonium Ions Based on Lipophilic Fluorescein Anionic Dye and Neutral Carriers”, Anal. Chim. Acta, 357, 85-90 (1997).
10. Reichert, J., Sellien, W., Ache, H.J., “Development of a Fiber-Optic Sensor for the Detection of Ammonium in Environmental Waters”, Sens. Actuators A, 26, 481-482 (1991).
11. Nakata, R., Kawamura, T., Sakashita, H. Nitta, A., “Determination of Ammonium Ion in a Flow-Injection System with a Gas-Diffusion Membrane: Selection of Optimal Conditions for the pH Indicator”, Anal. Chim. Acta, 208, 81-91 (1988).
12. Schulze, G., Liu, C.Y., Brodowski, M., Elsholz, O., Frenzel, W., Möller, J., “Different Approaches to the Determination of Ammonium Ions at Low Levels by Flow Injection Analysis”, Anal. Chim. Acta, 214, 121-136 (1988).
13. Abass, A.K., Hart, J.P., Cowell, D.C., Chappell, A., “Development of an Amperometric Assay for NH4+ Based on a Chemically Modified Screen-printed NAHD Sensor”, Anal. Chim. Acta, 373, 1-8 (1998).
14. Bertocchi, P., Compagnone, D., Palleschi, G., “Amperometric Ammonium Ion and Urea Determination with Enzyme-Based Probes”, Biosens. Bioelectron., 11, 1-10 (1996).
15. Senillou, A., Jaffrezic-Renault, N., Martelet, C., Cosnier, S., “A Miniaturized Urea Sensor Based on the Integration of Both Ammonium Based Urea Enzyme Field Effect Transistor and a Reference Field Effect Transistor in a Single Chip”, Talanta, 50, 219-226 (1999).
16. Heng, L.Y., Alva, S., Ahmad, M., “Ammonium Ion Sensor Based on Photocured and Self-Plasticising Acrylic Films for the Analysis of Sewage”, Sens. Actuators B, 98, 160-165 (2004).
17. Pandey, P.C., Singh, G., “Tetraphenylborate Doped Polyaniline Based Novel pH Sensor and Solid-State Urea Biosensor”, Talanta, 55, 773-782 (2001).
18. Saurina, J., Hernández-Cassou, S., Alegret, S., Fàbregas, E., “Determination of Lysine in Pharmaceutical Samples Containing Endogenous Ammonium Ions by Using a Lysine Oxidase Biosensor Based on an All-Solid-State Potentiometric Ammonium Electrode”, Biosens. Bioelectron., 14, 67-75 (1999).
19. Ikeda, M., Hachiya, H., Ito, S., Asano, Y., Imato, T., “Development of Long-Term Stable Ammonium Ion Sensor in Conjunction with a Microbial Membrane”, Biosens. Bioelectron., 13, 531-537 (1998).
20. Hamlaoui, M.L., Reybier, K., Marrakchi, M., Jaffrezic-Renault, N., Martelet, C., Kherrat, R., Walcarius, A., “Development of a Urea Biosensor Based on a Polymeric Membrane Including Zeolite”, Anal. Chim. Acta, 466, 39-45 (2002).
21. Hamlaoui, M.L., Kherrat, R., Marrakchi, M., Jaffrezic-Renault, N., Walcarius, A., “Development of an Ammonium ISFET Sensor with a Polymeric Membrane Including Zeolite”, Mater. Sci. Eng. C, 21, 25-28 (2002).
22. Koncki, R., Głab, S., Dziwulska, J., Palchetti I., Mascini, M., “Disposable Strip Potentiometric Electrodes with Solvent-Polymeric Ion-Selective Membranes Fabricated Using Screen-Printing Technology”, Anal. Chim. Acta, 385, 451-459 (1999).
23. Hauser, P.C., Tan, S.S., Cardwell, T.J., Cattrall, R.W., Hamilton, I. C., “Versatile Manifold for the Simultaneous Determination of Ions in Flow Injection Analysis”, Analyst, 113, 1551-1555(1988).
24. Shen, H., Cardwell, T.J., Cattrall, R.W., “Determination of Ammonia in Waste Waters by a Differential pH Method Using Flow Injection Potentiometry and a Nonactin-Based Sensor, Analyst, 122, 89-93 (1997).
25. Wróblewski, W., Chudy, M., Dybko, A., Brzózka, Z., “NH4+-Sensitive Chemically Modified Field Effect Transistors Based on Siloxane Membranes for Flow-Cell Applications”, Anal. Chim. Acta, 401, 105-110 (1999).
26. Kazanskaya, N., Kukhtin, A., Manenkova, M., Reshetilov, N., Yarysheva, L., Arzhakova, O,. Volynskii, A., Bakeyev, N., “FET-Based Sensors with Robust Photosensitive Polymer Membranes for Detection of Ammonium Ions and Urea”, Biosens. Bioelectron., 11, 253-261 (1996).
27. Senillou, A., Jaffrezic-Renault, N., Martelet, C., Griffe, F., “A Miniaturized Ammonium Sensor Based on the Integration of Both Ammonium and Reference FETs in a Single Chip”, Mater. Sci. Eng. C, 6 59-63 (1998).
28. Twu, H.S., Ling, T.R., Chou, T. C., Yang, M.C., “Ultrasonic Irradiation Eeffect in the Impregnation-Reduction Process of Preparing Pt/Nafion® NH4+ Sensor”, Ultrason. Sonochem., 8, 41-47 (2001).
29. Luo, Y.C., Do, J.S., “Urea Biosensor Based on PANI(urease)-Nafion/Au Composite Electrode”, Biosens. Bioelectron., 20, 15-23 (2004).
30. Strehlitz, B., Gründig, B., Kopinke, H., “Sensor for Amperometric Determination of Ammonia and Ammonia-Forming Enzyme Reactions”, Anal. Chim. Acta, 403, 11-23 (2000).
31. Cho W.J., Huang, H.J., “An Amperometric Urea Biosensor Based on a Polyaniline-Perfluorosulfonated Ionomer Composite Electrode”, Anal. Chem., 70, 3946-3951(1998).
32. Shih, Y.T., Huang, H.J., “A Creatinine Deiminase Modified Polyaniline Electrode for Creatinine Analysis”, Anal. Chim. Acta, 392, 143-150 (1999).
33. Walcarius, A., Vromman, V., Bessiere, J., “Flow Injection Indirect Amperometric Detection of Ammonium Ions Using a Clinoptilolite-Modified Electrode, Sens. Actuators B, 56, 136-143 (1999).
34. Pan, X., Kan, J. Yuan, L., “Polyaniline Glucose Oxidase Biosensor Prepared with Template Process”, Sens. Actuators B, 102, 325-330 (2004).
35. Turner, A.P.F. Karube, I. and G. S. Wilson, “Biosensors: Fundamentals and Applications”, Oxford University Press, 1989.
36. Osaka, T., Komaba, S., Seyama, M., Tanabe, K., “High-sensitivity urea sensor based on the composite film of electroinactive polypyrrole with polyion complex”, Sens. Actuators B, 35-36, 463-369 (1996).
37. Boubriak, O.A., Soldatkin, A.P., Starodub, N.F., Sandrovsky, A.K., El’skaya, A.K., “Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor”, Sens. Actruators B, 26-27, 429-431 (1995).
38. Pizzariello, A., Stredanský, M., Stredanská, S., Miertuš, S., “Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator”, Talanta, 54, 763-772 (2001).
39. Liu, D., Ge, K., Chen, K., Nie, L., Yao, S., “Clinical analysis of urea in human blood by coupling a surface acoustic wave sensor with urease extracted from pumpkin seeds”, Anal. Chim. Acta, 307, 61-69 (1995).
40. Connolly, P., “Clinical Diagnostics Opportunities for Biosensors and Bioelectronics”, Biosens. Bioelectron., 10, 1-6 (1995).
41. Rodriguez-Mozaz, S,. López de Alda, M.J., Marco, M.P., Barceló, D., “Biosensors for environmental Monitoring a Global Prespective”, Talanta, 65, 291-297 (2005).
42. Rogers, K.R., “Biosensors for Environmental Applications”, Biosens. Bioelectron., 10, 533-541 (1995).
43. Verma, N., Singh, M., “A Disposable Microbial Based Biosensor for Quality Control in Milk”, Biosens. Bioelectron., 18, 1210-1224 (2003).
44. Puig-Lleixà, C., Jiménez, C., Alonso, J., Bartrolí, J., “Polyurethane-Acrylate Photocurable Polymeric Membrane for Ion-Sensitive Field-Effect Transistor Based Urea Biosensors”, Anal. Chim. Acta, 389, 179-188 (1999).
45. Komaba, S., Seyama, M., Momma, T., Osaka, T., “Potentiometric Biosensor for Urea Based on Electropolymerized Electroinactive Polypyrrole”, Electrochim. Acta, 42, 383-388 (1997).
46. Mizutani, F., Yabuki, S., Sato, Y., “Voltammetric Enzyme Sensor for Urea Using Mercaptohydroquinone-Modified Gold Electrode as the Base Transducer”, Biosens. Bioelectron., 12, 321-328 (1997).
47. Senillou, A., Jaffrezic-Renault, N., Martelet, C., Cosnier, S., “A Miniaturized Urea Sensor Based on the Integration of Both Ammonium Based Urea Enzyme Field Effect Transistor and a Reference Field Effect Transistor in a Single Chip“, Talanta, 50, 219-226 (1999).
48. Kazanskaya, N., Kukhtin, A., Manenkova, M., Reshetilov, N., Yarysheva, L., Arzhakova, O., Volynskii, A., and Bakeyev, N., “FET-Based Sensors with Robust Photosensitive Polymer Membranes for Detection of Ammonium Ions and Urea”, Biosens. Bioelectron., 11, 253-261 (1996).
49. Hamlaoui, M.L., Reybier, K., Marrakchi, M., Jaffrezic-Renault, N., Martelet, C., Kherrat, T., Walcarius, A., “Development of a Urea Biosensor Based on a Polymeric Membrane Including Zeolite”, Anal. Chim. Acta, 466, 39-45 (2002).
50. Pandey, P.C., Singh, G., “Tetraphenylborate Doped Polyaniline Based Novel pH Sensor and Solid-State Urea Biosensor”, Talanta, 55, 773-782 (2001).
51. Vostiar, I., Tkac, J., Sturdik, E., Gemeiner, P., “Amperometric Urea Biosensor Based on Urease and Electropolymerized Toluidine Blue Dye as a pH-Sensitive Redox Probe”, Bioelectrochem., 56, 113-115 (2002).
52. Stred’anský, M., Pizzariello, A., Stred’anská, S., Miertuš, S., “Amperometric pH-Sensing Biosensors for Urea, Penicillin, and Oxalacetate”, Anal. Chim. Acta, 415, 151-157 (2000).
53. Adeloju, S.B., Shaw, S.J., Wallace, G.G., “Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor”, Anal. Chim. Acta, 341, 155-160 (1997).
54. Kanungo, M., Kumar, A., Contractor, A.Q., “Microtubule Sensors and Sensor Array Based on Polyaniline Synthesized in the Presence of Poly(styrene sulfonate)”, Anal. Chem., 75, 5673-5679 (2003).
55. Martinez-Pérez, D., Ferrer, M.L., Reyes Mateo, C., “A reagent less fluorescent sol-gel biosensor for uric acid detection in biological fluids”, Anal. Biochem., 322, 238-242 (2003).
56. Zhang, Y.Q., Shen, W.D., Gu, R.A., Zhu, J., Xue, R.Y., “Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane”, Anal. Chim. Acta, 369, 123-128 (1998).
57. Huang, S.H., Shih, YC., Wu, C.Y., Yuan, C.J., Yang, Y.S., Li, Y.-K., Wu, T.K., “Detection of serum uric acid using the optical polymeric enzyme biochip system”, Biosens. Bioelectron., 19, 1627-1633 (2004).
58. Sántha, H., Dobay, R,. Harsányi, G., “Amperometric uric acid biosensors fabricated of various types of uricase enzymes”, IEEE Sens. J., 3, 282-287 (2003).
59. Wu, F., Huang, Y., Li, Q., “Animal tissue-based chemiluminescence sensing of uric acid”, Anal. Chim. Acta, 536, 107-113 (2005).
60. Matos, R.C., Augelli, M.A., Lago, C.L., Angnes, L., “Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium”, Anal. Chim. Acta, 404, 151-157 (2000).
61. Miland, E., Miranda, Ordieres, A.J., Tuñón Blanco, P., Smyth, M.R., Fágáin, C.Ó., “Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid”, Talanta, 43, 785-796 (1996).
62. Nanjo, M., Guilbault, G.G., “Enzyme electrode sensing oxygen for uric acid in serum and urine”, Anal. Chem., 46, 1769-1772 (1974).
63. Uchiyama, S., Shimizu, H. Hasebe, Y., “Chemical amplification of uric acid sensor responses by dithiothreitol”, Anal. Chem., 66, 1873-1876 (1994).
64. Shimohigoshi, M., Karube, I., “Development of uric acid and oxalic acid sensors using a bio-thermochip”, Sens. Actuators B, 30, 17-21 (1996).
65. Kuwabata, S., Nakaminami, T., Ito, S.I., Yoneyama, H., “Preparation and properties of amperometric uric acid sensors”, Sens. Actuators B, 52, 71-77 (1998).
66. Shi, K., Shiu, K.K., “Determination of uric acid at electrochemically activated glassy carbon electrode”, Electroanal., 13, 1319-1325 (2001).
67. Rubianes, M.D., Rivas, G.A., “Carbon nanotubes paste electrode”, Electrochem. Commun., 5, 689-694 (2003).
68. Aguilar, R., Dávila, M.M., Elizalde, M.P., Mattusch, J., Wennrich,,R., “Capability of a carbon-polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid”, Electrochim. Acta, 49, 851-859 (2004).
69. Matos, R.C., Angnes, L., Araújo, M.C.U. Saldanha, T.C.B., “Modified microelectrodes and multivariate calibration for flow injection amperometric simultaneous determination of ascorbic acid, dopamine, epinephrine and dipyrone”, Analyst, 125, 2011-2015 (2000).
70. Ren, W., Luo, H.Q., Li, N.B., “Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid”, Biosen. Bioelectron., 21, 1086-1092 (2006).
71. Zheng, L., Wu, S., Lin, X., Nie, L., Rui, L., “Selective determination of uric acid by using a -cyclodextrin modified electrode”, Electroanal., 13, 1351-1354 (2001).
72. Wang, S., Lu, L., Lin, X., “A selective voltammetric method for uric acid detection at a glassy carbon electrode modified with electrodeposited film containing DNA and Pt-Fe(III) nanocomposites”, Electroanal., 16, 1734-1738 (2004).
73. Roy, P.R., Okajima, T., Ohsaka, T., “Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode”, J. Electroanal. Chem., 561, 75-82 (2004).
74. Gao, Z., Siow, K.S., Ng, A., Zhang, Y., “Determination of ascorbic acid in a mixture of ascorbic acid and uric acid at a chemically modified electrode”, Anal. Chim. Acta, 343, 49-57 (1997).
75. Raj, C.R., Ohsaka, T., “Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol”, J. Electroanal. Chem., 540, 69-77 (2003).
76. Premkumar, J., Khoo, S.B., “Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes”, J. Electroanal. Chem., 576, 105-112 (2005).
77. Zhang, L., Lin, X., “Covalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid”, Analyst, 126, 367-370 (2001).
78. Tian, F., Zhu, G., “Sol-gel derived iridium composite glucose biosensor”, Sens. Actuators B, 86, 266-270 (2002).
79. Rubianes, M.D., Rivas, G.A., “Amperometric biosensor for phenols and catechols based on iridium-polyphenol oxidase-modified carbon paste”, Electroanal., 12, 1159-1162 (2000).
80. You, T., Niwa, O., Kurita, R., Iwasaki, Y., Hayashi, K., Suzuki, K., Hirono, S., “Reductive H2O2 detection at nanoparticle iridium/carbon film electrode and its application as L-glutamate enzyme sensor”, Electroanal., 16, 54-59 (2004).
81. Rodriguez, M.C., and Rivas, G.A., “Glucose biosensor prepared by the deposition of iridium and glucose oxidase on glassy carbon transducer”, Electroanal., 11, 558-564 (1999).
82. Rodríguez, M.C., and Rivas, G.A., “An enzymatic glucose biosensor based on the codeposition of rhodium, iridium, and glucose oxidase onto a glassy carbon transducer”, Anal. Letters, 34(11), 1829-1849 (2001).
83. Wang, J., Rivas, G., Chicharro, M., “Glucose microsensor based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber electrodes”, J. Electroanal. Chem., 439, 55-61 (1997).
84. Yang, H., Kang, S.K., Choi, C.A., Kim, H., Shin, D.H., Kim, Y.S., Kim, Y.T., “An iridium oxide reference electrode for use in microfabricated biosensors and biochips”, Lab Chip, 4, 42-46 (2004).
85. 魏喬建,”聚苯胺/不鏽鋼電極之製備動力與其在鋰電池中之充放電行為”,東海大學化學工程所碩士論文,2001年。86. Kitani, A., Kaya, M., Sasaki, K., “Performance Study of Aqueous Polyaniline Batteries”, J. Electrochem. Soc., 133, 1069-1073 (1986).
87. 林建中,“高分子材料性質與應用”,高立圖書有限公司,P.450,87年。
88. The 2000 Nobel Prize in Chemistry, The Royal Swedish Scademy of Sciences, October 10, 2000.
http://www.nobel.se/chemistry/laureates/2000/public.html.
89. 吳詩澤,“電聚合聚苯胺複合膜與其在鋰二次電池之應用”,東海大學化學工程所碩士論文,1999年。90. MacDiarmid, A. G., Epstein, A. J., “The Polyanilines: Process Molecular Weight, Oxidation Date and Derivatives”, Faraday Discuss Chem. Soc., 88, 317(1989).
91. Syed, A. A., Dinesan, M. K., “Review: Polyaniline – A Novel Polymeric Material”, Talanta., 38(8), 815(1991).
92. Lin, S.M., Wen, T.C., “Electrochemical Synthesis and Properties on Thermally Prepared RuO2 Electrodes”, Electrochim. Acta, 39, 393-400 (1994).
93. Nunziante, P., Pistoia, G., “Factors Affecting the Growth of Thick Polyaniline Films by the Cyclic Voltammetry Technique”, Electrochim. Acta, 34, 223-228 (1989).
94. Arsov, L.D., Plieth, W., Kossmehl, G., “Electrochemical and Raman Spectroscopic Study of Polyaniline; Influence of the Potential on the Degradation of Polyaniline”, J. Solid State Electrochem., 2, 355-361(1998).
95. Motheo, A.J., Santos Jr, J.R., Venancio, E.C., Mattoso, L.H.C., “Influence of Different Types of Acidic Dopant on the Electrodeposition and Properties of Polyaniline Films”, Polymer, 39, 6977-6982 (1998).
96. Gao, M., Dai, S.H.L., Wallace, G., Gao, R., Wang, Z., “Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers”, Angew. Chem., 39, 3664-3667 (2000).
97. Fiordiponti, P., Pistoia, G., “An Impedance Study of Polyaniline Films in Aqueous and Organic Solutions”, Electrochim. Acta, 34, 215-221 (1989).
98. Glarum, S.H., Marshall, J.H., “The Impedance of Poly(aniline) Electrode Films”, J. Electrochem. Soc., 134, 142-147 (1987).
99. Aoki, K., Cao, J., Hoshino, Y., “Coulombic irreversibility at Polyaniline-Coated Electrodes by Electrochemical Switching”, Electrochim. Acta, 38, 1711-1716 (1993).
100. Rajendra Prasad, K., Munichandraiah, N., “Fabrication and Evaluation of 450 F Electrochemical Redox Supercapacitors Using Inexpensive and High-Performance, Polyaniline Coated, Stainless-Steel Electrodes”, J. Power Sources, 112, 443-451 (2002).
101. 李忠哲,聚苯胺之製備與性質探討及其鋰二次電池之應用,東海大學化學工程研究所碩士論文,(1998).102. 李美嬅,聚苯胺複合膜在非水溶液中之性質分析與在鋰二次電池中充放電性質,東海大學化學工程研究所碩士論文,(2001).103. Osaka, T., Nakajima, T., Shiota, K., Momma, T., “Electroactive Polyaniline Film Deposited from Nonaqueous Media”, J. Electrochem. Soc., 138, 1853-1858 (1991).
104. Guo, M., Chen, J., Li, J., Tao, B., Yao, S., “Fabrication of Polyaniline/Carbon Nanotube Composite Modified Electrode and Its electrocatalytic Property to the Reduction of Nitrite”, Anal. Chim. Acta, 532, 71-77 (2005).
105. Liang, L., Liu, J., Windisch Jr, C.F., Exarhos, G.J., Liu, Y., “Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires”, Angew. Chem., 41, 3665-3668 (2002).
106. Liu, J., Lin, Y., Liang, L., Voigt, J.A., Huber, D.L., Tian, A.R., Coker, E., Mckenzie, B., Mcdermott, M.J., “Templateless Assembly of Molecularly Aligned Conductive Polymer Nanowire: A New Approach for Oriented Nanostructures”, Chem. Eur. J., 9, 604-611 (2003).
107. Taguchi, S., Tanaka, T., “Fibrous Polyaniline as Positive Active Material in Lithium Secondary Batteries”, J. Power Sources, 20, 249-252 (1987).
108. Osaka, T., Ogano, S., Naoi, K., Oyama, N., “Electrochemical Polymerization of Electriactive Polyaniline in Nonaqueous Solution and Its Application in Rechargeable Lithium Batteries”, J. Electrochem. Soc., 136, 306-309 (1989).
109. Stejskal, J., Sapurina, I., Prokeš, J., Zemek, J., “In-Situ Polymerized Polyaniline Films”, Synth. Met., 105, 195-202 (1999).
110. Venancio, E.C., Costa, C.A.R., Machado, S.A.S., Motheo, A. J., “AFM Study of the Initial Stages of Polyaniline Growth on ITO Electrode”, Electrochem. Commun., 3, 229-223 (2001).
111. Mandić, Z., Duić, L., Kovačiček, F., “The Influence of Counter-Ions on Nucleation and Growth of Electrochemically Synthesized Polyaniline Film”, Electrochim. Acta, 42, 1389-1402 (1997).
112. McManus, P.M., Cushaman, R.J., Yang, S.C., “Influence of Oxidation and Protonation on the Electrical Conductivity of Polyaniline”, J. Phys. Chem., 91, 744-747 (1987).
113. Kitani, A., Izumi, J., Yano, J., Hiromoto, Y., Sasaki, K., “Basic Behaviors and Properties of the Electrodeposited Polyaniline”, Bull. Chem. Soc. Jpn., 57, 2254-2257 (1984).
114. Murugesan, R., Subramanian, E., “Effect of Organic Dopants on Electrodeposition and Characteristics of Polyaniline Under the Varying Influence of H2SO4 and HClO4 Electrolyte Media”, Mater. Chem. Phys., 80, 731-739 (2003).
115. Ivanov, S., Mokreva, P., Tsakova, V., Terlemezyan, L., “Electrochemical and Surface Structural Characterization of Chemically and Electrochemically Synthesized Polyaniline Coatings”, Thin Solid Films, 441, 44-49 (2003).
116. Guo, X.W., Jiang, Y.F., Zhai, C.Q., Lu, C., Ding, W. J., “Preparation of Even Polyaniline Film on Magnesium Alloy by Pulse Potentiostatic Method”, Synth. Met., 135-136, 169-170 (2003).
117. Tang, Z., Liu, S., Wang, Z., Dong, S., Wang, E., “Electrochemical Synthesis of Polyaniline Nanoparticles”, Electrochem. Commun., 2, 32-35 (2000).
118. Jović, V.D., Trišović, T., Jović, B.M., Vojnović, M., “The Morphologh of Different Metals Electrodeposited onto Polyaniline Films”, J. Electroanal. Chem., 408, 149-155 (1996).
119. Aoki, K., Tano, S., “Simultaneous Occurrence of Polymerization and Decomposition of Polyaniline Films”, Electrochim. Acta, 50, 1491-1496 (2005).
120. 林智汶, “有機材料氣體感測器之應用”, 化工技術, 83期, 136-144 (2000).121. Osaka, T., Nakajima, T., Shiota, K., Momma, T., “Electroactive polyaniline film deposited from nonaqueous media”, J. Electrochem. Soc., 138, 2853-2858 (1991).
122. Trivedi, D.C., “Influence of the anion on polyaniline”, J. Solid State Electrochem., 2, 85-87 (1998).
123. Tang, H., Kitani, A., Shiotani, M., “Effects of anions on electrochemical formation and overoxidation of polyaniline”, Electrochim. Acta, 41, 1561-1567 (1996).
124. Baughman,R.H., “Conducting polymer artificial muscles”, Synth. Met., 78, 339-353 (1996).
125. Crouch, E., Cowell, D.C., Hoskins, S., Pittson, R.W., Hart, J.P., “A novel, disposalble, screen-printed amperometric biosensor for glucose in serum fabrication using a water-based carbon ink”, Biosens. Bioelectron., 21, 712-718 (2005).
126. Wilson, R., Turner, A.P.F., “Glucose-oxidase—an ideal enzyme”, Biosens. Bioelectron., 7(3), 165-185 (1992).