跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾莞容
研究生(外文):Wan-Jung Tseng
論文名稱:鐵氧化物與鐵氧化物@金之磁性奈米粒子製備與性質
論文名稱(外文):Preparation and characterization of iron oxides and iron oxides@Au magnetic nanoparticles
指導教授:杜景順
指導教授(外文):Jing-Shan Do
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:242
中文關鍵詞:鐵氧化物磁性奈米粒子鐵氧化物@金磁性質磁熱效應
外文關鍵詞:iron oxidesmagnetic nanoparticleiron oxides@Aumagnetice propertiesmagneto-caloric effect
相關次數:
  • 被引用被引用:3
  • 點閱點閱:763
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文在水相溶液系統中,利用共沈澱法在不同Fe2+與Fe3+濃度比與添加不同界面活性劑濃度下,製備鐵氧化物,將鐵氧化物分散於溶液中,再利用還原法將Au製備至鐵氧化物上。文中利用XRD分析其晶粒大小、AEM觀察其顆粒大小、氧化還原滴定分析鐵氧化物中Fe2+的含量、AAS分析核殼式奈米粒子的組成比例,並利用SQUID測量其磁性質。在本文中亦探討製備所得之鐵氧化物與鐵氧化物@金奈米粒子之磁熱效應。
在不同莫耳濃度比(Fe2+/Fe3+)下所製備之鐵氧化物,其粒徑大小隨著比值下降而減小,所獲得顆粒的型態與大小皆不均勻。當Fe2+ / Fe3+濃度比為2 M / 1 M、1 M / 2 M與1 M / 2.5M時,其平均粒徑分別為26、17與15 nm。而當添加固定濃度之界面活性劑SB12 (N-dodecyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate)時,在反應物Fe2+與Fe3+總濃度較低時,製備所得之顆粒大小及其型態受界面活性劑的影響較大,當Fe2+與Fe3+之濃度控制在0.5 M與0.25 M,製備所得之鐵氧化物顆粒大小,隨界面活性劑之濃度SB12由1.656增加至6.620 mM時,其粒徑分別由17 nm降為13 nm。製備所得之鐵氧化物的飽和磁化量隨粒徑減小而下降。在水相中,當鐵氧化物與黃金的莫耳比為1/1、1/2與1/3時,製備所得之鐵氧化物@金顆粒大小分佈為11-30, 12-30 與 15-40 nm。鐵氧化物@金奈米粒子的飽和磁化量較鐵氧化物低。
利用Fe2+與Fe3+之濃度比為1 M:2 M製備所得之鐵氧化物進行磁熱效應分析,由結果發現磁熱效應之溫度上升量與磁場強度、頻率以及磁性物質之含量皆成正比關係。改變反應前驅物的濃度比例(Fe2+/Fe3+)1 M / 2 M、1 M / 2.5 M與1M / 3 M製備所得之鐵氧化物,其飽和磁化量分別為68.5、49.68與16.11 emu g-1,磁熱效應中施加65 Hz及電壓150 V所獲得之溫度上升量為1.1、0.85與0.6 ℃,其溫度上升量隨所獲得之飽和磁化量上升而增加。核殼式鐵氧化物@金奈米粒子,在磁熱效應中溫度上升量隨著Au前驅物濃度增加而遞減,其原因為其飽和磁化量與磁滯區面積減小。
The iron oxides nano-particles were prepared by using the coprecipitation with various Fe2+/Fe3+ ratios, the kinds and concentrations of surfactants. Then, the iron oxides@Au nano-particles were prepared by the reduction of Au3+ on the iron oxides. The grain size, particle size, surface morphology, compositions of iron oxides and iron oxides@Au nano-particles were analyzed by XRD, AEM, FE-SEM, oxidation/reduction titration, and AAS, respectively. The magnetic properties of iron oxides were measured by SQUID. The magneto-caloric effect of the iron oxides and iron oxides@Au nanoparticles were also investigated in this thesis.
The particle sizes of iron oxides with non-uniform morphology and size distribution decreased by the decrease in the molar ratio of Fe2+/Fe3+. The average particle sizes of iron oxides were obtained to be 26, 17, and 15 nm for Fe2+/Fe3+ ratio of 2M/1M, 1M/2M, and 1M/2.5M, respectively. The morphology and particle size was affected by surfactant at a relative lower concentration of Fe2+ and Fe3+. The particle size of iron oxides decreased from 17 to 13 nm with increasing the concentration of SB12 (N-dodecyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate) surfactant from 1.656 to 6.62 mM for preparing iron oxides at the Fe2+/Fe3+ ratio of 0.5M/0.25M. The saturation magnetization of iron oxides decreased with decreasing the particle size. The particle sizes of iron oxides@Au prepared in the aqueous solution were obtained to be 11-30, 12-30 and 15-40 nm for the iron oxides/Au molar ratios of 1/1, 1/2 and 1/3, respectively. The saturation magnetization of iron oxides@Au was lower than that of iron oxides.
The increase in the temperature was increased with the strength and frequency of applied magnetic field, and the amount of magnetic material in the magneto-caloric effect analysis. The saturation magnetization and the increase in the temperature in the magneto-caloric analysis were found to be 68.5, 49.68 and 16.11 emu g-1 , and 1.1, 0.85 and 0.6 oC for the iron oxides prepared at the Fe2+/Fe3+ ration of 1M/2M, 1M/2.5M, 1M/3M, respectively. The increase in the temperature of iron oxides@Au nano-paritcles in the magneto-caloric analysis decreased with increasing Au precursor for preparation due to the decrease in the saturation magnetization and the magnetic hysteresis area.
中文摘要 III
英文摘要 V
誌謝 VII
目錄 IX
表目錄 XIV
圖目錄 XVII
第一章 緒論 1
1-1 奈米材料與奈米科技之簡介 1
1-1-1 奈米材料之特性 2
1-1-1-1 量子尺寸效應 2
1-1-1-2 小尺寸效應 2
1-1-1-3 表面效應 4
1-1-2 奈米粒子之製備與應用 7
1-2 磁性理論之簡介 16
1-2-1 磁性單位 16
1-2-2 磁性的種類 16
1-2-3 磁滯曲線(hysteresis loop) 24
1-3 磁性奈米材料 27
1-3-1 磁性奈米材料鐵氧化物之製備與性質 32
1-3-2 磁性奈米材料應用 40
1-4 核殼式奈米粒子之製備與應用 44
1-5 研究動機與目的 61
第二章 實驗設備與程序 66
2-1 實驗儀器 66
2-2 實驗藥品 68
2-3 實驗程序 70
2-3-1 鐵氧化物之奈米顆粒製備 70
2-3-2 鐵氧化物@Au奈米複合材料之製備 72
2-4 奈米顆粒及複合材料之鑑定與分析 73
2-4-1 XRD晶相分析 73
2-4-2 AEM分析 73
2-4-3 FE-SEM分析 74
2-4-4 組成分析 74
2-4-4-1 氧化還原滴定 74
2-4-4-2 AAS分析 76
2-4-5 磁性測量 76
2-4-5-1 SQUID分析 76
2-4-6 磁熱效應之量測 76
第三章 結果與討論 80
3-1 鐵氧化物奈米顆粒之性質分析 80
3-1-1 AEM、SEM鑑定分析 80
3-1-1-1 未添加界面活性劑之鐵氧化物奈米粒子 80
3-1-1-2 添加界面活性劑之鐵氧化物奈米粒子 91
3-1-1-2-1 微胞的形成 91
3-1-1-2-2 兩性離子型界面活性劑SB12的影響 93
3-1-1-2-3 陽離子型之界面活性劑CTAB的影響 109
3-1-2 製備所得鐵氧化物的晶相分析 116
3-1-2-1 未添加界面活性劑下,Fe2+與Fe3+濃度比之影響 117
3-1-2-2 界面活性劑SB12濃度之影響 120
3-1-2-3 界面活性劑CTAB濃度之影響 128
3-1-3 製備所得鐵氧化物之組成分析 132
3-1-3-1 界面活性劑不存在下製備所得鐵氧化物奈米粒子組成分析 133
3-1-3-2 兩性離子型界面活性劑SB12添加濃度對鐵氧化物組成之影響 137
3-1-3-3 陽離子型界面活性劑CTAB添加濃度對鐵氧化物組成之影響 139
3-1-4 製備所得鐵氧化物之磁性質量測 143
3-1-4-1 未添加界面活性劑所製備之鐵氧化物磁性質分析 143
3-1-4-2 添加界面活性劑所製備之鐵氧化物之磁性質分析 153
3-2 鐵氧化物@Au奈米粒子之性質分析 157
3-2-1 AEM鑑定分析 157
3-2-2 晶相分析 164
3-2-3 組成分析 169
3-2-4 磁性質之量測 170
3-3 鐵氧化物及鐵氧化物@Au奈米粒子之磁熱效應 174
3-3-1 鐵氧化物重量與水體積比的影響 174
3-3-2 磁場強度之影響 178
3-3-3 頻率的影響 181
3-3-4 不同製備條件所得之鐵氧化物及鐵氧化物@Au奈米粒子之磁熱效應及其影響因素 183
3-4 綜合討論 194
3-4-1 鐵氧化物之反應途徑 194
3-4-2 不同製備條件對鐵氧化物顆粒大小與型態之影響 197
3-4-3 添加界面活性劑對鐵氧化物的顆粒大小與型態影響之機制 202
3-4-4 磁性奈米粒子之磁性質與磁熱效應 208
第四章 結論與建議 212
參考文獻 216
[1]Iijima, S., “Helical microtubles of graphitic carbon”, Nature, 1991, 354, 56-58
[2]郭正次, 朝春光, “奈米結構材料科學”, 全華科技圖書科技故份有限公司, 1st, 台北, 2004, 1-1 - 3-2.
[3]尹邦躍,“奈米時代”, 五南圖書出版公司, 1st, 台北, 2002, 1-20, 63-70
[4]Link, S., El-Sayed, M.A., “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods”, J. Phys. Chem. B, 1999, 103, 8410-8426
[5]劉吉平 郝向陽, “奈米科學與技術”, 世貿出版社, 1st, 台北, 2003, 18-25, 28-50
[6]李奮生 史紅虎, “打造奈米經濟-引爆21世紀科技革命”, 書泉出版社, 1st, 台北, 2002, 114-119
[7]張有義 郭蘭生, “膠體與界面化學入門”, 高立圖書
[8]楊乾信 池易楷 楊惇智, “開啟明日之窗---奈米材料”, 科學發展,第392期, 2005, 48-53
[9]高濂 鄭珊 張青紅, “奈米光觸媒”, 五南圖書出版公司, 1st, 台北, 2004, 6-10
[10]O’Neal, D.P., Hirsch, L.R., Halas, N.J., J. Paynea, D., Westb, J. L., “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles”, Cancer Latt., 2004, 209, 171-176.
[11]Cheng, F.Y., Su, C.H., Yang, Y.S., Yeh, C.S., Tsai, C.Y., Wu, C.L., Wu, M.T., Shieh, D.B., “Characteriazaion of Aqueous dispelrsions of Fe3O4 Nanoparticles and their Biomedical Applications”, Biomaterials, 2005, 26, 729-738.
[12]Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L., “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance”, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13549-13554

[13]Dharap, S.S., Wang, Y., Chandna, P., Khandare ,J.J., Qiu , B., Gunaseelan, S., Sinko, P.J., Stein, S., Farmanfarmaian, A., Minko, T., “Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide”, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 12962-12967.
[14]金重勳,“磁性技術手冊”, 中華民國磁性技術協會, 1st, 新竹, 2002, 5-7, 37-49
[15]鄭振東, “實用磁性材料”, 全華科技圖書, 1st, 台北, 2000, 1-1 – 1-7
[16]Jiles, D., “Introducetion to Magnetism and Magnetic Materials”, Chapman & Hall, 1st, New York, 1991, 69-82, 89-93,186-197.
[17]溫明鏡, “氧化鐵磁性奈米粒子之合成與特性研究”, 國立中正大學物理研究所碩士論文, 2003.
[18]周永洽, “現在磁性材料原理與應用”, 化學工業出版社, 1st, 北京, 2002, 14-22, 120-127, 633-674
[19]張煦, 李學養, “磁性物理學”, 聯經出版社, 1st, 台北, 2004, 17-21
[20]Cornell, R.M., Schwertmann, U., “The Iron Oxids---Structure, Properties, Reaction, Occurrences and Uses”, second, Completely Revised and Extended Edition, WILEY-VCH.
[21]Lingyan Wang, Jin Luo, Mathew M. Maye, Quan Fan, Qiang Rendeng, Mark H. Engelhard, Chongmin Wang, Yuehe Lin and Chuan-Jian Zhong, “Iron oxide-gold core-shell nanoparticles and thin film assembly”, J. Mater. Chem., 2005, 15, 1821-1832
[22]David, I., Welch, A.J.E., “Oxidation of magnetite and related spinels. Constitution of γ-ferric oxide”, Trans. Faraday Soc., 1956, 52, 1642-1650
[23]Kang, Y.S., Risbud S., Rabolt, J.F. and Stroeve, P., “Synthesis and Characterizaiton of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles”, Chem. Mater., 1996, 8, 2209-2211.
[24]Pardoe, H., Chua-anusorn. W., St. Pierre, T.G., Dobson, J., “Structural and Magnetic Properties of Nanoscale Iron Oxide Particles Sybthesized in the Presence of Dextran or Polyvinyl Alcohol”, J. magn. magn. mater., 2001, 225, 41-16.

[25]Hyeon, T., Lee, S.S., Park, J., Chung, Y. and Na, H.B., “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process”, J. Am. Chem. Soc. 2001, 123, 12798-12801.
[26]Fried, T., Shemer, G., Markovich, G., “Ordered Two-Dimensional Arrays of Ferrite Nanoparticles”, Adv. Mater., 2001, 13, 1158-1161.
[27]Wang, J., Zhang, K., Peng, Z., Chen, Q., “Magnetic Properties Improvement in Fe3O4 Nanoprticles Grown under Magnetic Fields”, J. Cryst. Growth., 2004, 266, 500-504.
[28]Tang, N.J., Zhong, W., Jiang, H.Y., Wu X.L., Liu, W. and Du, Y.W., “Nanostructured Magnetite (Fe3O4) Thin Films Prepared by Sol-Gel method”, J. magn. magn. mater., 2004, 282, 92-95.
[29]Gupta, A.K., Gupta, M., “Synthesis and Surface Engineering of Iron Oxide Nanoparticles for biomedical application”, Biomaterials, 2005, 26, 3995-4021.
[30]Yee, C., Kataby, G., Ulman, A., Prozorov, T., White, H., King, A., Rafailovich, M., Sokolov, J., and Gedanken, A., “Self-Assembled Monolayers of Alkanesulfonic and-phosphonic Acids on Amorphous Iron OxideNanoparticles”, Langmuir, 1999, 15, 7111-7115.
[31]Sahoo, T., Pizerm, H., Fried, T., Golodnitsky, D., Burstein, L., Sukenik, CN., and Markovich, G., “Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles: A Cmoparison with Fatty Acids”, Langmuir, 2001, 17, 7907-7911.
[32]Lee, J., Isobe, T., Senna, M., “Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH”, J. Coll. Interf. Sci, 1996, 177, 490-494.
[33]劉浩澧, “相位陣列式超音波熱治療系統之加熱策略設計與熱劑量控制”, 國立台灣大學電機工程研究所博士論文, 2003.
[34]Nasjner, M. S.; Frenkel, A. I.; Somerville, D.; Hills, C. W.; Shapley, J. R. and Nuzzo, R. G., “Core shell inversion during Nucleation and Growth of Bimetallic Pt/Ru Nanoparticles.” , J. Am. Chem. Soc., 1998, 120, 8093-8101
[35]Trguer, M., de Cointet, C., Remita, H., Khatouri, J., Mostafavi, M., Amblard, J., Belloni, J., de Keyzer, R. “Dose Rate Effects on Radiolytic Synthesis of Gold-Siliver Bimetallic Clusters in Solution”, J. Phys, Chem. B, 1998, 102, 4310-4321.

[36]Lin, J.; Zhou, W.; Kumbha, A.; Wiemann, J.; Fang, J.; Carpenter, E. E., O’Connor, C. J., “Gold-Coated Iron(Fe@Au) Nanoparticles: synthesis, Charaterization, and Magnetic Field-Induced Self-Assembly”, J. solid state chem. , 2001 , 159, 26-31.
[37]Park, J. and Cheon, J., “Synthesis of “Solid Solution”and “Core-Shell” Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalaion Reactions”, J. Am. Chem. Soc., 2001, 123, 5743-5746.
[38]Yali, C., Daodao, H., Yu, F. and Jianbiao, M., “Preparation and Mechanism of Fe3O4/Au Core/Shell Super-paramagnetic Microspheres”, Science in China (series B), 2001, 44, 404-410.
[39]Sobal, N.S.; Hilgendorff, M. ; Möhwald, H., Giersig, M., “Synthesis and Structure of Collidal Bimetallic Nanocrystals: Non-Alloying System Ag/Co”, Nano Lett., 2002, 2, 621-624.
[40]王炫仁,“鎳核/金殼及鎳核/銀殼複合奈米粒子之製備”,國立成功大學化學工程學系碩士論文,2002.
[41]Teng, X. and Yang, H., “Synthesis of Face-Centered Tetragonal Fe-Pt Nanoparticles and ranular Flms from Pt@Fe2O3 Core-Shell Nanoparticle.”, J. Am. Chem. Soc., 2003, 125, 14559-14563
[42]Lim, Y.T., Park, O.Ok, Jung, H.T., “Gold Nanolayer-Encapsulated Silica Particles Synthesized by Surface Seeding and Shell Growing Method:Near Infrared Responsive Materials”, J. colloid interface sci., 2003, 263, 449-453.
[43]Fang, J., He, J., Shib, E.Y., Grimm, D., O’Connor, C.J. and Jun, M.J., “Colloidal Preparation of γ–Fe2O3@Au [Core@Shell] Nanoparticles”, Mat.Res.Soc.Symp.Proc., 2003, 774, 149-154.
[44]Hyeon, T., Lee, S.S., Park, J., Chung, Y. and Na, H.B., “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process”, J. Am. Chem. Soc. 2001, 123, 12798-12801.
[45]Lyon, J.L., Fleming, D.A., Stone, M.B., Schiffer, P., and Williams, M.E.,“Synthesis of Fe Oxide Core / Au Shell Nanoparticles by Iterative Hydroxylamine(NH2OH) Seeding”, Nano Lett., 2004, 4, 719-723.

[46]Brown, K.R. and Natan, M.J., “Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces”, Langmuir 1998, 14, 726-728.
[47]O’Neal, D.P., Hirsch, L.R., Halas, N.J., Paynea, J.D., Westb, J. L.,“Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles”, Cancer Latt., 2004, 209, 171-176.
[48]Wang, L., Luo, J., Maye, M.M., Fan, Q., Rendeng, Q., Engelhard, M.H., Wang, C., Lin, Y. and Zhong C.J., “Iron oxide-gold core-shell nanoparticles and thin film assembly”, J. Mater. Chem., 2005, 15, 1821-1832.
[49]Wang, L., Luo, J., Maye, M.M., Fan, Q., Rendeng, Q., Engelhard, M.H., Wang, C., Lin, Y. and Zhong C.J., “Monodispersed Core-Shell Fe3O4@Au Nanoparticles”, J. Phys. Chem. B, 2005, 109, 21593-21601.
[50]Nedkov, I. Merodiiska, T., Slavov, L., Vandenberghe, R.E., Kusano, Y., Takada, J., “Suface Oxidation, Size and Shape of Nano-Sized Magnetite Obtained by Co-Precipitation”, J. magn. magn. mater., 2006, 300, 358-367.
[51]Gokon, N., Shimada, A., Kaneko, H., Tamaura, Y., Ito, K. Ohara, T.. “Magnetic Coagulateon and Reaction Rate for the Aqueous Ferrite Formation Reation”, J. magn. magn. mater., 2002, 238, 47-55.
[52]李潔如 牟中原, “微胞、微乳液的形成”, 科學月刊, 第298期, 1994.
[53]曹恆光 連大成, “淺談微乳液”, 物理雙月刊, 23卷, 4期, 2001, 488-493
[54]Tamaura, Y., “New Ferrite-Formation Reactions in the Suspensions of γ-ferric Hydroxide Oxide [γ-FeOOH] and "Green Rust II"”, Advances in Ceramics, 1985, 15, 87-92.
[55]Hui, C.L., Li, X.G., Hsing, I.-M., “Well-Dispersded Surfactant- Stabilized Pt/C Nanocatalysts for Fuel Cell Application: Dispersion Control and Surfactant Removal”, Electrochim. Acta., 2005, 51, 711-719.
[56]王正全, “鈀奈米粒子之製備與應用”,國立成功大學化學工程研究所博士論文, 2001, 21-34.

[57]Pileni, “Nanosized Particles Made in Colloidal Assemblies”, Langmuir, 1997, 13, 32266-3276.
[58]Koutzarova, T., Kolev, S., Ghelev, Ch., Paneva, D., and Nedkov, I., “Microstructural StudyAnd Size Control of Iron Oxide Nanoparticles Produced by Microemulsion Technique”, Physica Stat. Sol. C, 2006, 3, 1302-1307.
[59]Li, W.; Zhou, W.; Li, H.; Zhou, Z., Zhou, B., “Nano-Structure Pt-Fe/C as Cathode Catalysts in Direct Methanol Fuel Cell.”, Electrochim. Acta., 2004, 49, 1045-1055.
[60]汪建民,“材料分析 Materials analysis”,中國材料科學學會, 2001, p.65.
[61]余樹楨,“晶體之結構與性質”, 渤海堂文化有限公司, 1st, 台北, 1987, 223-234.
[62]Deepa Thapa, V.R. Palkar, M.B. Kurup, S.K. Malik, “Properties of Magnetite Nanoparticles Synthesized through a Novel Chemical Route”, Mater. Lett., 2004, 58, 2692-2694.
[63]Jeffery, G. H., Bassett, J., Mendham, J., Denney, R.C., “Vogel’s Textbook of Quantitative Chemical Analysis”, John Wiley & Sons, 5th, N.Y., 1989, 368-378.
[64]馮睿,沈敏,李慶,陳浩,廖水嬌,文利柏,王淑玉,“微型滴定法測定硫酸亞鐵的含量”, 光譜實驗室, 2004, 21, 362-364
[65]Chen, X., Zhang, Z., Li, X., Shi, C., “Hollow Magnetite Spheres: Synthesis, Charaterizaion, and Magnetic Properties”, Chem. Phys. Lett., 2006, 294-298.
[66]Zheng, Y.H., Cheng, Y., Bao, F., Wang, Y.S., “Synthesis and Magnetic Properties of Fe3O4 Nanopartilces”, Mater. Res. Bull., 2006, 41, 525-529.
[67]廖敏宏, “磁性奈米載體在生物觸媒與生化分離之應用”, 國立成功大學化學工程研究所博士論文, 2002, p 91-92.

[68]Lu, Z., Prouty, M.D., Guo, Z., Golub, V.O., Kumar, C.S.S.R., Lvov, Y.M., “Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embeded with Co@Au Nanoparticles”, Langmuir, 2005, 21, 2042-2050.
[69]Si, Sh., Li, Ch., Wang, X., Yu, D. , Peng, Q., Li, Y., “Magnetitc Monodisperse Fe3O4 Nanoparticles”, Communications, 2005, 5, 391-393.
[70]林麗娟,田大昌,“微結構分析計數之介紹”, 工業材料雜誌, 2002, 181, p 73-79.
[71]Nedkov, I., Merodiiska, T., Slavov, L., Vandenberghe, R.E., Kusano, Y., Takada, J., “Surface Oxidation, Size and Shape of Nano-Sized Magnetite Obtained by Co-Precipitation”. J. magn. magn. mater., 2006, 300, 358-367.
[72]Correa, J.R., Canetti, D., Castillo, R., Llópiz, J.C., Dufour, J., “Influence of the Precipitation pH of Magnetite in the Oxidation Process to Maghemite”, Mater. Res. Bull., 2006, 41, 703-713.
[73]Wu, X.H., Guo. S.Y., Li, L., “Chemical Transformation Preparation and Mechanism of Magnetic Cation Exchange Resin”, Gaofenzi Cailiao Kexue Yu Gongcheng, 2001, 17, 31-33.
[74]Wu, S.H., Chen D.H, “Synthesis of High-Concentraion Cu Nanoparticles in Aqueous CTAB Solutions”, J. colloid interface sci., 2004, 273, 165-169.
[75]Kong, L., Liu, S., Yan, X., Li, Q., He, H., “Syntheisi of Hollow-Shell MCM-48 Using the Ternary Surfactant Templateng Method”, Micropor. Mesopor. Mater., 2005, 81, 251-257.
[76]Kalambur, V.S., Han, B., hammer, B.E., Shield, T.W., Bischof, “In Vitro Characterizaion of Movement, Heating and Visualizaion of Magnetic Nanoparticles for Biomedical applications”, Nanotechnology, 2005, 16,1221-1233.
[77]Aono, H., Hirazawa, H., Naohara, T., Maehara, T., Kikkawa, H., Watanabe, “Synthesis of Fine Magnetite Powder using Reverse Coprecipitation Method and its Heating Properties by Applying AC Magnetic Field”, Mater. Res. Bull., 2005, 1126-1135.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top