跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯威罕
研究生(外文):Wei-Han KO
論文名稱:以電沈積法製備氧化鈷薄膜陽極之修飾及其充放電性質
指導教授:杜景順
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:365
中文關鍵詞:鋰二次電池SiO2氧化鈷電沈積濺鍍Ni
外文關鍵詞:Lithium ion second batteryCobalt oxideElcctodepositionSiO2sputtering Ni
相關次數:
  • 被引用被引用:3
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,以電化學沈積法製備CoO前驅物α-Co(OH)2,在前驅物的製備過程中,改變了攪拌速率,改變奈米顆粒的種類,添加量與粒徑,界面活性劑triton X-100的添加,進行製備前驅物α-Co(OH)2之修飾,在500℃高純氮環境下煆燒製得經修飾之CoO/Cu,另一方面,另一方面在本論文亦利用濺鍍Ni於CoO表面製備CoO-Ni/Cu電極。將各種製備所得之電極與Li箔組裝為Li / 1.0 M LiPF6 , EC-DEC (體積比1:1)溶液 / CoO鈕釦型電池,於0.02~3V電位範圍,進行充放電性質探討。在材料性質上利用SEM、XRD、FTIR與EDS等分析其性質。
由SEM觀察前驅物之組態,發現α-Co(OH)2呈現奈米纖維結構,製備前驅物時攪拌速率、SiO2的添加量、SiO2 與TiO2顆粒大小與界面活性劑存在與否,均影響著前驅物及其煆燒後CoO之物性。在pH 3.30~3.14無添加物,攪拌速率50rpm下煆燒所得CoO粒徑為31~27 nm,添加0.05 % 12nm SiO2,晶粒降為16~12 nm,進一步的添加0.065M triton X-100界面活性劑,其粒徑更進一步降為14~11nm。
在pH為3.30~3.14下,電沈積攪拌速率50rpm,CoO薄膜厚度為2.5~3.0μm,不可逆電容百分比為29.9%,其最大電容量1580 mAh g-1,當攪拌速率增加為100rpm時,CoO薄膜厚度與不可逆電容百分比減少為2.0~2.4μm與24.3%,最大電容量增加為3321 mAh g-1。
無添加物下,在pH 3.30~3.14條件下獲得之CoO(薄膜)/Cu,以0.2C充放電,在第30圈可達最高電容量為1580 mAh g-1,但添加0.05% 12nm SiO2下,在第69圈達最高電容量為2471 mAh g-1,添加SiO2時,對電容量的提升主要在於機構III充放電容量的增加,因SiO2扮演奈米Co擔體的角色,催化膠態高分子的生成與消失;另一方面SiO2顆粒具有降低CoO粒徑以及防止生成之Co奈米粒子聚集的效果,故可有效的提升CoO的充放電電容量,以及防止其電容量衰退。在CoO電極上濺鍍Ni可增加電極的導電度,因此可增加其電容量與抑制電容量衰退的作用。
The precursor of CoO (α-Co(OH)2) was prepared by the electrodeposition with various strring rates, nano-particles with different amounts and particle sizes in the presence of surfactant triton X-100 or not. Cobalt oxide (CoO) was obtained by calcinations of α-Co(OH)2 in N2 atmosphere at 500 oC. Furthermore, Ni was sputtered on CoO surface to prepared CoO-Ni/Cu in this thesis. The charge/discharge properties of CoO prepared in this work were investigated by the coin cell of Li/1.0M LiPF6 , EC-DEC (v/v=1:1) / CoO in the potential range of 0.02~3V. The characteristics of CoO were analyzed by SEM, XRD, FTIR and EDS, respectively.
The morphology of α-Co(OH)2 analyzed by SEM were nano-fiber type structures. The properties of CoO and its precursor were affected by the stirring rate, the amount and size of SiO2 and TiO2 nano-particles, and surfactant for electrodeposition of the precursor. Whenα-Co(OH)2was prepared in pH 3.30~3.14 and 50 rpm, the grain size of CoO was found to be 31~27 nm, the grain size of CoO was decreased to 16~12 nm by addition of 0.05% 12nm SiO2 for preparing α-Co(OH)2. By further adding 0.065M triton X-100 to prepare the precursor of α-Co(OH)2 in the electrodeposition, the grain size was decreased to 14~11 nm.
When the precursor was prepared in pH 3.30~3.14, the thickness, the irreversible capacity in the first cycle and the maximum charge capacity of CoO film decreased from 2.5~3.0μm and 29.9 % to 2.0~2.4 μm and 24.3 %, and the maximum charge capacity increased from 1580 to 3321 mAh g-1 with the increase in the stirring rate from 50 to 100 rpm for preparingα-Co(OH)2.
The maximum capacity of CoO (thin film)/Cu was obtained to be 1580 and 2471 mAh g-1 at the charge/discharge cycle of 30 and 69 for preparing the precursor of CoO in the absence and presence of 0.05% 12nm SiO2. The functions of SiO2 in the CoO were deduced to be acted as the support of Co to catalyze the formation/dissolution of the polymeric gel. Moreover, the CoO grain size in the calcination procedure, and the Co particle size in the charge/discharge process were restricted by the presence of the SiO2 nano-particle Hence the charge/discharge capacity of CoO was effectively promoted, and the capacity fading was inhibited by the presence of SiO2 nano-particle. The increase in the capacity and decrease in the capacity fading were also obtained by sputtering Ni on the CoO surface due to the increase in the conductivity of CoO electrode.
中文摘要............................................... I
英文摘要...............................................III
致謝....................................................V
目錄................................................... VI
表目錄................................................. XI
圖目錄................................................. XVI
第一章 緒論............................................ 1
1-1 電池概述及發展現況................................ 1
1-2 鋰二次電池........................................ 4
1-3 鋰二次電池陽極材料................................ 7
1-3-1 碳材料應用於鋰二次電池陽極.................. 7
1-3-2 錫氧化物應用作為鋰二次電池陽極.............. 9
1-3-3 無機與合金材料應用作為鋰二次電池陽極........ 12
1-4 鈷氧化物於鋰電池陽極材料之研究與應用.............. 15
1-4-1 鈷氧化物應用作為鋰電池陽極材料之充放電機構… 15
1-4-2 鈷氧化物於鋰電池中作為陽極材料之應用………… 26
1-5 研究動機與實驗架構………………………………………… 33
第二章 實驗設備、方法與程序……………………………………… 35
2-1 儀器…………………………………………………………… 35
2-2 藥品…………………………………………………………… 37
2-3 實驗程序與步驟……………………………………………… 39
2-3-1 Co(OH)2前趨物之合成……………………………… 42
2-3-1-1含SiO2之Co(OH)2製備……………………45
2-3-1-2含TiO2之Co(OH)2製備…………………… 45
2-3-1-3含介面活性劑Triton X-100與.45
2-3-2陽極CoO(薄膜)/Cu之製備…………………… 46

2-3-3 CoO(薄膜)-Ni/Cu之製備……………………………… 47
2-3-4 鈕扣型電池組裝……………………………………… 47
2-3-5 XRD 繞射分析……………………………………… 48
2-3-6傅立葉紅外線光譜儀(FTIR)………………………… 51
2-3-7 SEM 表面組態分析…………………………………… 51
2-3-8 SEM膜厚分析………………………………………… 51
2-3-9原子吸收光譜儀(AA)分析Ni的重量………………… 52
2-3-10鈕扣型電池充放電測試……………………………… 52
2-3-11交流組抗分析(AC Impedances analysis)…………… 53
2-3-12循環伏安(Cyclic voltammetry, CV)分析…………… 53
2-3-13 電流中斷分析法(current interrupt)……………………54
2-3-14 二次離子質譜儀(SIMS)………………………………56
第三章 結果與討論……………………………………………………57
3-1 以電沈積法製備CoO薄膜前驅物Co(OH)2薄膜之特性……57
3-1-1電沈積次數之影響………………………………………57
3-1-2電沈積所得之α- Co(OH)2 分子組成之鑑定…………63
3-1-3電沈積之共沈積矽化物成份分析………………………68
3-1-4 電沈積時攪拌速率對α- Co(OH)2的影響……………82
3-1-5 電沈積時SiO2添加量對Co(OH)2的影響……………96
3-1-6 電沈積時添加不同SiO2顆粒尺寸對Co(OH)2表面型態的影響………………………………………………… 111
3-1-7電沈積時添加triton X-100與SiO2對Co(OH)2的影響.115
3-1-8電沈積時添加TiO2顆粒對Co(OH)2表面型態的影響.122
3-2 CoO(薄膜)之製備與性質……………………………………126
3-2-1 製備前驅物之攪拌速率對CoO薄膜的影響…………129
3-2-2 電沈積時不同SiO2添加量對CoO薄膜的影響……146
3-2-3 電沈積時不同SiO2顆粒尺寸對CoO薄膜的影響……164
3-2-4 電沈積時添加triton X-100與SiO2對CoO(薄膜)的影響………………………………………………………172
3-2-5 電沈積時添加TiO2顆粒對CoO(薄膜)的影響………181
3-2-6 CoO表面上鍍Ni對CoO(薄膜)表面型態的影響…187
3-3 CoO/Cu為之充放電機構與循環特性…………………………191
3-3-1 充放電機構……………………………………………192
3-3-2 製備前驅物時攪拌速率對CoO(薄膜)/Cu充放電性質的影響…………………………………………………217
3-3-3 製備前驅物時溶液中奈米級SiO2對CoO(薄膜)/Cu充放電性質的影響………………………………………233
3-3-3-1 充放電性質………………………………233
3-3-3-2 電流中斷法分析……………………………249
3-3-3-3 交流阻抗分析………………………………255
3-3-4 製備前驅物時SiO2粒徑對CoO(薄膜)/Cu充放電性質的影響…………………………………………………275
3-3-5製備前驅物時添加triton X-100與12nm SiO2,對CoO(薄膜)/Cu充放電性質的影響……………………………282
3-3-5-1 0.2C-rate充放電………………………………282
3-3-5-2 充放電速率對CoO(薄膜)/Cu充放電性質影響……………………………………………289
3-3-6製備前驅物時添加21nm TiO2對CoO(薄膜)/Cu充放電性質的影響……………………………………………….297
3-3-7 CoO(薄膜)-Ni/Cu之充放電性質影響…………………304
3-4 綜合討論……………………………………………………… 314
3-4-1 製備前驅物時,添加物不同對CoO(薄膜)/Cu為負極之充放電性質影響……………………………………… 314
第四章 結論與建議…………………………………………………323
參考文獻………………………………………………………………330
1.楊長榮,”二次鋰電池有機電解液之碳極表面鈍性膜之研究”, 清華
大學化學工程研究所博士論文, 1996

2.衣寶廉, “燃料電池-高效、環保的發電方式”, 五南圖書, 2003

3.Linden, D., Handbook of Batteries, McGraw-Hill, Inc. , 1995

4.費定國, 鋰二次電池發展簡介與我國發展近況, 化工技術, 1996
第4卷, 第2期, 82-91

5.洪為民, 二次鋰離子電池技術、發展趨勢與市場, 化學, 1999第
57卷, 第2期, 181-190

6.陳春來, 由天然農作物製備鋰離子電池負極碳材料, 中央大學化
學工程所碩士論文, 2001

7.姚慶意, 陳金銘, 鋰離子二次電池負極材料介紹, 工業材料, 1996
第110期, 57-65

8.陳金銘, 高容量碳粉材料, 工業材料, 1998, 第133期, 85-92

9.楊模樺, 鋰電池原件精密化學品, 化工技術, 2003, 第11 卷, 第
8期, 118-125

10. Courtney, I. A. and Dahn, J. R., “Electrochemical and In Situ X-Ray
Diffraction Studies of the Reaction of Lithium with Tin Oxide
Composites”, J. Electrochem. Soc., 1997, 144(6), 2045-2052

11. Crosnier, O., Brousse, T., Devaux, X., Fragnaud, P., and Schleich, D.
M., “New Anode Systems for Lithium Ion Cells”, Journal of Power
Sources, 2001, 94, 169-174

12. Belliard, F. and Irvine, J. T. S., “Electrochemical Performance of
Ball-Milled ZnO-SnO2 Systems as Anodes in Lithium-ion Battery”,
Journal of Power Sources, 2001, 97-98, 219-222

13. Read, J., Foster, D., Wolfenstine J., and Behl, W., “SnO2-Carbon Composites for Lithium-ion Battery Anodes”, Journal of Power Sources, 2001, 96, 277-281

14.Sivashanmugam, A., Kumar, T. P., Renganathan, N.G., Gopukumar, S. Wohlfahrt-Mehrens, M. and J., Garche,“Electrochemical behavior of Sn/SnO2 mixtures for use as anode inlithium rechargeable batteries.” Journal of Power Sources, 2005, 144, 197-203

15.Kim, Chunjoong, Noh, Mijung, Choi, Myungsuk, Cho, Jaephil and Park, Byungwoo, “Critical Size of a Nano SnO2 Electrode for Li-Secondary Ba”, Chem. Mater, 2005, 17, 3297-3301

16.Winter, M., and Besenhard, J. O., “Electrochemical Lithiation of Tin and Tin-based Intermetallics and Composites”, Electrochim. Acta., 1999, 45, 31-50

17.Natarajan, C., Fukunaga, N., and Nogami, G., “Titanium Dioxide Thin Film Deposited by Spray Pyrolysis of Aqueous Solution”, Thin Solid Films, 1998, 322, 6-8

18.Wang, G. X., Sun, L., Bradhurst, D, Zhong, H. S., Dou, S. X. and Liu, H. K., “Nanocrystalline NiSi Alloy as an Anode Material for Lithium-ion Batteries”, Journal of Alloys and Compounds, 2000, 306, 349-252

19.Bourderau, S., Brousse, T., and Schleich, D. M., “Amorphous silicon as a Possible Anode Material for Li-ion Batteries”, Journal of Power Sources, 1999, 81-82, 233-236

20.Zhao, X. B., Cao, G. S., Lv, C. P., Zhang, L. J,. Hu, S. H., Zhu, T. J. and Zhou, B. C., “Electrochemical Properties of Some Sb or Te Based Alloys for Candidate Anode Materials of Lithium-ion Batteries”, Journal of Alloys and Compounds, 2001, 315, 265-269

21.Panero, S., Satolli, D., Salomon, M. and Scrosati, B., “A New Type of Lithium-ion Cell Based on the Li4Ti5O12/Li2Co0.4Fe0.4Mn3.2O8 High-voltage, Electrode Combination”, Electrochemistry Communications, 2000, 2, 810-813

22.Hao, Y., Lai, Q., Xu, Z., Liu, X. and Ji, X., “Synthesis by TEA sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery”, Solid State Ionics, 2005, 176, 1201–1206

23.Noh, Mijung, Kwon, Yoojung, Lee, Hyojin, Cho, Jaephil, Kim, Yoojin, and Gyu Kim, Min, “Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery”, Chem. Mater., 2005, 17, 1926-1929

24.Xue, Ming-Zhe, Cheng, Sun-Chao, Yao, Jia, Fu, Zheng-Wen, “Fabrication and lithium electrochemistry of Ag2Se thin film anode”, Electrochimica Acta, 2006, 51(16), 3287-3291

25.Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. and Tarascon, J-M., “Nano-sized Transition-metal Oxides as Negative-Electrode Materials for Lithium-ion Batteries”, Nature, 2000, 407, 496-499

26.Choi, H. C., Lee, S. Y., Kim, S. B., Kim, M. G., Lee, M. K., Shin, H. J. and Lee, J. S., “Local Structural Characterization for Electrochemical Insertion-Extraction of Lithium into CoO with X-ray Absorption Spectroscopy”, J. Phys. Chem.B, 2002, 106, 9252-9260

27.Kang, Y.-M., Song, M.-S., Kim, J.-H., Kim, H.-S., Park, M.-S., Lee, J.-Y., Liu, H.K. and Dou, S.X., “A study on the charge–discharge mechanism of Co3O4 as an anode for the Li ion secondary battery”Electrochimica Acta, 2005, 50, 3667–3673.

28.Dollé, M., Poizot, P., Dupont, L. and Tarascon, J-M., “Experimental Evidence for Electrolyte Involvement in the Reversible Reactivity of CoO toward Compounds at Low Potential”, Electrochemical and Solid-State Letters , 2002, 5(1), A18-A21

29.Laruelle, S., Grugeon, S., Poizot, P., Dolle, M., Dupont, L. and Tarascon, J-M., “On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential”, Journal of The Electrochemical Socity, 2002, 149 (5), A627-A634

30.Larcher, D., Sudant, G., Leriche, J-B., Chabre, Y. and Tarascon, J-M., “The Electrochemical Reduction of Co3O4 in a Lithium Cell”, Journal of The Electrochemical Socity, 2002, 149(3), 234-241

31.Dedryve`re, R., Laruelle, S., Grugeon, S., Poizot, P., Gonbeau, D. and Tarascon, J.-M., “Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium. ” Chemistry of Materials, 2004, 16(6), 1056-1061.

32.Badway, F., Plitz, I., Grugeon, S., Laruelle, S., Dollé, Gozdz, M., A. S. and Tarascon, J-M., “Metal Oxides as Negative Electrode Materials in Li-ion Cells”, Electrochemical and Solid-State Letters, 2002, 5(6), 115-118

33.Kanga, Y.-M., Kima, K.-T., Kima, J.-H., Kima, H.-S., Lee, P. S., Lee, J.-Y., Liu, H.K. and Dou, S.X., “Electrochemical properties of Co3O4, Ni–Co3O4 mixture and Ni–Co3O4 composite as anode materials for Li ion secondary batteries ” Journal of Power Sources, 2004, 133, 252–259.

34.Wang, G. X., Chen, Y., Konstantinov, K., Yao, J., Ahn, J. H., Liu, H. K. and Dou, S. X., “Nanosize Cobalt Oxides as Anode Materials for Lithium-ion Batteries”, Journal of Alloys and Compounds , 2002, 340, 5-10

35.Wang, G. X., Chen, Y., Konstantinov, K., Yao, J., Ahn, J. H., Liu, H. K. and Dou, S. X., “Investigation of Cobalt Oxides as Anode Materials for Li-ion Batteries”, Journal of Power Sources , 2002, 109, 142-147

36.Connor, P. A. and Irvine, J. T. S., ”Combined X-ray sSudy of Lithium(tin) Cobalt Oxide Matrix Negative Electrodes for Li-ion Batteries”, Electrochim. Acta., 2002, 47, 2885-2892

37.Yuan, Zhengyong, Huang, Feng, Feng, Chuanqi, Sun, Jutang and Zhou, Yunhong, “Synthesis and Electrochemical Performance of Nanosized Co3O4”, Materials Chemistry and Physics, 2003, 79, 1-4

38.Kang, Yong-Mook; Kim, Ki-Tae; Lee, Ki-Young and Lee, Seo-Jae, “Improvement of Initial Coulombic Efficiency of Co3O4 by Ballmilling Using Ni as an Additive”, Journal of The Electrochemical Society, 2003, 150 (11), A1538-A1543

39.翁健翔,”應用於鋰二次電池中氧化鈷陽極材料之製備與性質”,東海大學化學工程學系碩士論文, 2003

40.戴瑞豐,”以電沈積法制備氧化鈷薄膜陽極及其在鋰二次電池中之充放電性質”,東海大學化學工程學系碩士論文, 2004

41.陳炳裕,”鋰二次電池中氧化鈷陽極材料之修飾及其充放電性質”,東海大學化學工程學系碩士論文, 2005

42.Jayashree, R. S. and Kamath Vishnu, P., “Electrochemical Synthesis of α-cobalt Hydroxide”, Journal of Materials Chemistry, 1999, 9, 961-963

43.Xu, Z. P. and Zeng, H. C., “Control of surface area and porosity of
Co3O4 via intercalation of oxidative or nonoxidative anions in
hydrotalcite-like precursors”, Chemistry Material, 2000, 12,
3459-3465

44.Perruchot, Christian , Chehimi, Mohamed M., Delamar, Michel , Eccles, John A., Steele, Timothy A. , Mair, Craig D., “SIMS analysis of conducting polypyrrole—silica gel composites”, Synthetic Metals, 2000, 113, 53-63

45.Bailie, Jillian E., Rochester, Colin H., and Hutchings, Graham J., “Effects of Thiophene and SO2 on Acrolein Hydrogenation over Co/SiO2 catalysts”, Journal of Molecular Catalysis A: Chemical, 1998, 136, 35-46

46.Xu, Rong and Chun, Zeng Hua, “Dimensional Control of Cobalt-hydroxide-carbonate Nanorods and Their Thermal Conversion to One-Dimensional Arrays of Co3O4 Nanoparticles”, J. Phys. Chem. B, 2003, 107, 12643-12649

47.李嘉平,” X-光繞射之應用與方法 ”,化工,1992, 第39卷第3期, 52-58

48.Tomczyk P., Mosialek M., and Oblakowski, J., “Investigation of Processes Occurring at NiO and CoO Monocrystalline Electrodes in Basic Molten Carbonates Using Electrochemical Impedance Spectroscopy”, Electrochimica Acta, 2001, 47, 945-954

50.Balaya, Palani, Li, Hong, Kienle, Lorentz and Maier, Joachim, ”Full Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity”, Advanced Functional Materials, 2003, 13, 621-625

51.Tomczyk, P., Mosialek, M. and Oblakowski, J., “Investigation of Processes Occurring at NiO and CoO Monocrystalline Electrodes in Basic Molten Carbonates Using Electrochemical Impedance Spectroscopy”, Electrochimica Acta, 2001, 47, 945-954

52.Potoczna-Petru, D., Jablonski, J. M. J. Krajczyk, Okal and L., “Influence of oxidation-reduction treatment on the microstructure of Co/SiO2 catalyst”, Applied Catalysis A: General, 1998, 175, 113-120

53.Srinivasan, Venkat, Wang, G.Q., and Wang, C.Y., “Mathematical Modeling of Current-Interrupt and Pulse Operation of Valve-Regulated Lead Acid Cells”, Journal of The Electrochemical Socity, 2003, 150 (3), A316-A325

54.Orisini, Francois, Dolle, Mickael and Tarascon, Jean-Marie, ” Impedance Study of the Li/Electrolyte interface upon Cycling”, Solid State Ionics, 2000, 135, 213-221
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top