跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗民
研究生(外文):Jong-Min Lin
論文名稱:超臨界二氧化碳流體中龍腦之溶解度量測及關聯
論文名稱(外文):Measurements and Correlations of the Solubilities of Borneol in Supercritical Carbon Dioxide
指導教授:程學恆
指導教授(外文):Shueh-Hen Cheng
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:145
中文關鍵詞:超臨界流體萃取龍腦共溶劑溶解度
外文關鍵詞:supercritical fluid extractionborneolcosolventsolubility
相關次數:
  • 被引用被引用:1
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用半流動式相平衡實驗裝置來進行超臨界二氧化碳流體萃取實驗,以二氧化碳作為萃取溶劑,量測龍腦或稱2-莰醇(borneol,2-Camphanol)在超臨界狀態下的平衡溶解度,並加入乙醇作為共溶劑,探討在共溶劑的影響下溶解度變化的情形,系統操作溫度為308.15、318.15、328.15與338.15 K,壓力則在100至261 bar之間。實驗結果顯示,具弱極性之龍腦在超臨界二氧化碳中之溶解度範圍在1.50×10-3 ~ 2.86×10-2之間,而在加入乙醇之後,其溶解度明顯上昇近10倍,溶解度範圍在0.0142 ~ 0.2436之間。在另一方面,本研究使用Peng-Robinson狀態方程式,配合雙交互作用參數之凡德瓦爾混合律,將昇華壓係數視為可調參數,來關聯二成份系統,龍腦溶解度之平均相對誤差分別為9.0 %。而在三成份系統相平衡數據的迴歸上,溶解度之平均相對誤差為5.8 %。此外,亦採用半經驗關聯式來迴歸溶解度數據,分別以Chrastil、Schmitt-Reid、Giddings 及Santiago-Teja等半經驗關聯式進行關聯,其中二成份系統之龍腦溶解度以Chrastil模式所獲得之誤差6.2 %為最小;而三成份系統之龍腦溶解度則以Giddings模式誤差4.1%為最小。
This research study adopted a semi-flow type phase equilibrium apparatus to carry out supercritical extraction experiments. Carbon dioxide was used as an extracting solvent and the solubility of borneol (or 2-Camphanol) was measured at 308.15, 318.15, 328.15, and 338.15 K over a pressure range from 100 to 260 bar. For comparison purposes, solubility experiments for borneol were also conducted at these conditions using ethanol as a cosolvent.The experimental results showed that the solubility of borneol with low polarity in the supercritical carbon dioxide was in the range between 2.86×10-2 and 1.50×10-3. Upon adding ethanol as the cosolvent, the solubility rose nearly 10 times and was in the range of 0.0142 ~ 0.2436.In the work, the Peng-Robinson equation of state with two-parameter van der Waals mixing rules was used to correlate the experimental solubilities data. Antoine-like sublimation pressure constants of the solute were treated as adjustable parameters in regressing the data. The percentage average absolute relative deviation (AARD%) of the borneol-CO2 system was about 9.0%, and that of the borneol-CO2-ethanol system was about 5.8%. In addition, the measured solubility data of borneol were correlated using four semi-empirical models including the Chrastil, Schmitt-Reid, Giddings, and Santiago-Teja equations. Experimental data and correlation results based on the four models were in satisfactory agreement with a maximum average absolute relative deviation percentage (AARD%) of about 12.4%. The Chrastil model resulted in the smallest deviations of 6.2% in the two-component system, and the Giddings model resulted in the smallest deviations of 4.1% in the three-component system.
中文摘要…………………………………………………………………………I
英文摘要…………………………………………………………………………II
誌 謝……………………………………………………………………………III
目 錄……………………………………………………………………………IV
表目錄……………………………………………………………………………VIII
圖目錄……………………………………………………………………………XI

第一章 緒論……………………………………………………………………1
1-1 前言……………………………………………………………………1
1-2 研究動機與目的………………………………………………………2
1-3 論文結構與組織………………………………………………………3
第二章 文獻回顧………………………………………………………………4
2-1 超臨界流體……………………………………………………………5
2-1.1 超臨界流體的定義…………………………………………6
2-1.2 超臨界流體的特性…………………………………………8
2-1.3 超臨界流體的種類…………………………………………12
2-1.4 影響超臨界流體溶解能力的因素…………………………14
2-1.5 超臨界流體相平衡裝置.……………………………………22
2-1.6 超臨界流體之應用…………………………………………23
2-2 熱力學理論模式……………………………………………………29
2-2.1 相平衡理論…………………………………………………29
2-2.2 狀態方程式法………………………………………………32
2-2.3半經驗關聯模式……………………………………………50
2-2.4 膨脹液體模式法……………………………………………56
2-2.5超臨界流體萃取的質傳原理………………………………59
2-3 實驗物質……………………………………………………………60
第三章 實驗部分……………………………………………………………63
3-1 實驗藥品……………………………………………………………63
3-2 實驗設備……………………………………………………………64
3-3 裝置簡介……………………………………………………………66
3-3.1進料部分與壓力控制系統…………………………………66
3-3.2平衡系統……………………………………………………68
3-4 實驗操作步驟………………………………………………………69
3-5 原始數據處理………………………………………………………73
第四章 龍腦之平衡溶解度量測……………………………………………75
4-1 實驗結果……………………………………………………………75
4-1.1二氧化碳-龍腦二成份系統…………………………………75
4-1.2龍腦-二氧化碳-乙醇三成份系統…………………………78
4-2 模擬計算……………………………………………………………83
4-2.1 狀態方程式………………………………………………83
4-2.2物性資料之估算……………………………………………88
4-2.3半經驗關聯式法……………………………………………91
4-2.4 二氧化碳密度的估算……………………………………92
4-3 實驗溶解度數據之迴歸……………………………………………93
4-3.1 二氧化碳-龍腦系統………………………………………93
4-3.2 二氧化碳-龍腦-乙醇系統………………………………113
4-3.3 狀態方程式與半經驗關聯式之比較……………………129
第五章 結論與建議………………………………………………………131
符號說明……………………………………………………………………133
參考文獻……………………………………………………………………137
Angus, S., B. Armstrong, and K. M. de Reuck, IUPAC. International Thermodynamic Tables of the Fluid State: Carbon Dioxide, Pergamon Press, Oxford, UK (1973).

Basil, O. B., C. C. Kao, and K. M. Dooley, R. P. Gambrell, and F. C. Knopf, “Supercritical extraction of toxic organics from soils,” Ind. Eng. Chem. Res., 26, 261-268 (1987).

Chimowitz, E. H. and K. J. Pennisi, “Process synthesis concepts for supercritical gas extraction in the crossover region,” AIChE J., 23, 1665-1676 (1986).

Chordia, L. and R. Robey, Proceeding of the 5th international symposium on supercritical fluid, Atlanta, GA (2000).

Chrastil, J., “Solubility of solids and liquids in supercritical gases,” J. Phys. Chem., 86, 3016-3021 (1982).

Cortesi, A., I. Kikic, P. Alessi, G. Turtoi, and S. Garnier, “Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide : experimental data and correlation,” J. Supercritical Fluids,14,139-144(1999).

Cygnarowicz, P. G. and S. K. Kumar, “Design and control of a process to extract β-carotene with supercritical carbon dioxide,” Biotechnol. Prog., 6, 82-91 (1990).

De Fillip, R. P. and J. M. Moses, “Extraction of organics from aqueous solution using critical fluid carbon dioxide,” Biotechnol. Bioeng. Symp., 11, 205 (1982).

Dooley, K. M., C. P. Kao, R. P. Gambrell, and F. C. Knopf, “The use of entrainers in the supercritical extraction of soils contaminated with hazardous organics,” Ind. Eng. Chem. Res., 26, 2058-2062 (1987).

Duarte, A. R. C., S. Santiago, H. C. de Sousa, and C. M. M. Duarte, “Solubility of acetazolamide in supercritical carbon dioxide in the presence of ethanol as a cosolvent, ”J. Chem. Eng. Data, 50, 216-220 (2005).

Foster, N. R., H. Singh, S. L. J. Yun, D. L. Tomasko, and S. J. Macnaughton, “Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical carbon dioxide,” Ind. Eng. Chem. Res., 32, 2849-2853 (1993).

Francis, A. W., “Ternary system of liquid carbon dioxide,” J. Phys. Chem., 58, 1099-1109 (1954).

Gangadhara Rao, V. S. and M. Mukhopadhyay, “Influence of Binary Interaction Parameter on Prediction of Supercritical Fluid Phase Equilibrium Data,” Proceedings of the 39th Annual Convention of IIChE, (1986)

Georgenton, G. K., R. L. Smith, and A. S. Teja, “Application of cubic equation of state to polar fluids and fluid mixtures,” ACS Symp. Series, 300, 434-451 (1986).

Giddings, J. C., M. N. Myers, L. McLaren, and R.A. Keller, “High pressure gas chromatography of nonvolatile species,” Science, 162, 67-73 (1968).

Giddings, J. C., M. N. Myers, and J. W. King, “Dense gas chromatography at pressures to 2000 atmospheres, ” J. Chromatogr. Sci., 7, 276-283 (1969).

Gonzalez, J. C., M. R. Vieytes, A. M. Botana, J. M. Vieites, and L. M. Botana, “Modified mass action law-based model to correlate the solubility of solids and liquids in entrained supercritical carbon dioxide, ” J. Chromatography A, 910, 119-125 (2001).

Gordillo, M. D., M. A. Blanco, A. Molero, and E. M. de la Ossa, “Solubility of the antibiotic Penicillin G in supercritical carbon dioxide,” J. Supercritical Fluids, 15, 183-190 (1999).

Hannary, J. B. and J. Hogarth, “On the solubility of solid in gases,” Proc. Roy. Soc. London, 29, 324 (1879).

Haselow, J. S., S. H. Han, R. A. Greenkorn, and K. C. Chao, ACS Symp. Ser., 300, 156-178 (1986).

Harvey, A. H. “Supercritical solubility of solids from near-critical dilute-mixture theory,” J. Phy. Chem., 94, 8403-8406 (1990).

Huang, Z., S. Kawi, and Y.C. Chiew, “Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents, ” J. Supercritical Fluids, 30, 25-39 (2004).

Huang, Z., Y. C. Chiew, W. D. Lu, and S. Kawi, “Solubility of aspirin supercritical carbon dioxide/alcohol mixtures,” Fluid Phase Equilibria, 237, 9-15 (2005).

Huron, M. J. and J. Vidal, “New mixing rules in simple equations of state for representing vapor-liquid equilibria of strongly nonideal mixtures,” Fluid Phase Equilibria, 3, 255-271 (1979).

Ismadji, S. and S. K. Bhatia, “Solubility of selected esters in supercritical carbon dioxide,” J. Supercritical Fluids, 27, 1-11 (2003).

Iwai, Y., T. Fukuda, Y. Koga, and Y. Aral, “Solubilities of myristic acid, palmitic acid, and cetyl alcohol in supercritical carbon dioxide at 35, ” J. Chem. Eng. Data, 36, 430-432 (1991).

Jaubert, J. N. and F. Mutelet, ”VLE prediction with the Peng-Robinson equation of state and temperature dependent Kij calculated through a group contribution method,” Fluid Phase Equilibria, 224, 285-304 (2004).

Jennings, D. W., R. W. Lee, and A. S. Teja, ”Vapor-liquid equilibria in the carbon dioxide + ethanol and carbon + 1-butanol systems, ”J. Chem. Eng. Data, 36, 303-307 (1991).

Joback, K. G. and R. C. Reid, ”Estimation of pure-component prop-erties from group-contributions, ”Chem. Eng. and Com., 57, 233–243 (1987).

Kim, K. H. and J. Hong, “Equilibrium solubilities of spearmint oil components in supercritical carbon dioxide and ethane,” Fluid Phase Equilibria, 164, 107-115 (1999).

Kurnik, R. T., S. J. Holla, and R. C. Reid, “Solubility of solids in supercritical carbon dioxide and ethylene,” J. Chem. Eng. Data, 26, 47-51 (1981).

Kramer, A. and G. Thodos, “Solubility of 1-hexadecanol and palmitic acid in supercritical carbon dioxide, ” J. Chem. Eng. Data, 33, 230-234 (1988).

Kramer, A. and G. Thodos, “Solubility of 1-octadecal and stearic acid in supercritical carbon dioxide,” J. Chem. Eng. Data, 34, 184-187 (1989).

Krukonis, V. J., P. M. Gallagher, M. P. Coffey, and W. W. Hillstrom, “Gas anti-solvent recrystallization of RDX: formation of ultra-fine particles of a difficult-to-comminute explosive, ” J. Supercritical Fluids, 5, 130-142 (1992).

Kwak, T. Y. and G. A. Mansoori,’’Van der Waals Mixing Rules for Cubic Equations of State,” Chem. Eng. Sci., 41, 1303-1309(1986).

Lee, R. J. and K. C. Chao, “Extraction of 1-methyl naphthalene and m-cresol with supercritical carbon dioxide and ethane,” Fluid Phase Equilibria, 43, 329-340 (1988).

Lim, J. S., Y. W. Lee, J. D. Kim, Y. Y. Lee,and H. S. Chun, “Mass-transfer and hydraulic characteristics in spray and packed extraction columns for supercritical carbon dioxide-ethanol-water system,” J. Supercritical Fluids, 8, 81-176 (1995).

Lin, M. C, M. J. Tsai, and K. C. Wen, “Supercritical fluid extraction of flavonoids from scutellariae radix, ” J. Chromatography A, 830, 387-395 (1999).

Luque de Castro, M.D. and M.T. Tena, “Strategies for su-. percritical fluid extraction of polar and ionic compounds, ” Trends in Analytical Chemistry, 15,32-37 (1996)

Madras, G., C. Kulkarni, and J. Modak, “Modeling the solubilities of fatty acid in supercritical carbon dioxide,” Fluid Phase Equilibria, 209, 207-213 (2003).

Mantell, C., E. M. de la Ossa, and M. Rodriguez, “Supercritical fluid extraction of anthocyanins from grape pomace,” Solvent Extraction for the 21st Century, Proceedings of ISEC '99, Barcelona, Spain, 2, 1615-1618 (2001).

Marr, R. and T. Gamse, “Use of supercritical fluids for different processes including new developments-a review,” Chem. Eng. Processing, 39, 19-28 (2000).

Matson, D. W., R. C. Petersen, and R. D. Smith, “The preparation of polycarbosilane powders and fibers during rapid expansion of supercritical fluid solutions, ” Materials Letters , 4, 429-32 (1986).

Mcdermott, W. T., H. Subawalla, M. B. Rao, D. V. Roth, and K. R. Fabregas, “Dense fluid compositions and processes using same for treatment of articles such as semiconductor wafers to remove process residue. ” U.S. Pat. Appl. Publ., 22 (2006).

McHugh, M. A. and V. J. Krukonis, Supercritical Fluid Extraction, Butterworth, Stoneham, (1986).
McHugh, M. A. and V. J. Krukonis, Supercritical Fluid Extraction: Principles and Practice, 2nd ed., Butterworth-Heinemann, Boston, (1994).

McHugh, M. A., A. J. Seckner, and T. J. Yogan, “High-pressure phase behavior of binary mixtures of octacosane and carbon dioxide,” Ind. Eng. Chem. Fundam, 23, 413-432 (1984).

Mendes, R. L., B. P. Nobre, J. P. Coelho, and A. F. Palavra, “Solubility of β-carotene in supercritical carbon dioxide and ethylene,” J. Supercritical Fluids, 16, 99-106 (1999).

Mendez-Saniago, J. and A. S. Teja, “The solubilities of solids in supercritical fluids,” Fluid Phase Equilibria, 158-160, 501-510 (1999).

Mendez-Saniago, J. and A. S. Teja, “The solubilities of solids in supercritical fluids: Consistency of data and a new model for cosolvent system,” Ind. Eng. Chem. Res, 39, 4767-4771 (2000).

Mutelet, F., S. Vitu, R. Privat, and J.-N. Jaubert, “Solubility of CO2 in branched alkanes in order to extend the PPR78 model (predictive 1978,Peng Robinson EOS with temperature-dependent Kij calculated through a group contribution method) to such system,” Fluid Phase Equilibria, 238, 157-168 (2005).

Murga, R., M. T. Sanz, S. Beltran, and J. L. Cabezas, “Solubility of some phenolic compounds contained in grape seeds in supercritical carbon dioxide,” J. Supercritical Fluids, 23, 113-121 (2002).

Murga, R., M. T. Sanz, S. Beltran, and J. L. Cabezas, “Solubility of three hydroxycinnamic acids in supercritical carbon dioxide,” J. Supercritical Fluids, 27, 239-245(2003).

Nalesnik, C. A., B. N. Hansen, and J. T. Hsu, “Solubility of pure taxol in supercritical carbon dioxide,” Fluid Phase Equilibria, 146, 315-323 (1998).

Nelder, J. A. and R. Mead, “A simple method for function minimization,” Computer J., 7, 308-313 (1964).

Ozlem, G. U. and T. Feral, “Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide and processing aspects, ” J. Supercritical Fluids, 36, 1-15(2005).

Patel, N. C. and A. S. Teja, “A new cubic equation of state for fluids and fluid mixtures,” Chem. Eng. Sci., 37, 463-473 (1982).

Peter, S. and G. Brunner, “On the Solubility of Glycerides and. Fatty Acids in Compressed Gases in the Presence of an Entrainer,” Separation and Technology, 17, 199–214 (1982).

Peng, D. Y. and D. B. Robinson, “A new two-constant equation of state,” Ind. Eng. Chem. Fundam, 15, 59-64 (1976).

Peng, D. Y. and D. B. Robinson, “The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson Programs, gas processors association, ” GPA Research Report RR-28 (1978).

Poling, B. E., J. M. Prausnitz, and T. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw Hill, New York, 11-28 (2001).

Qingjie, S., D. Xiaolin,“ Supercritical CO2 extraction of lycopene from tomato skins, ” Shipin Yu Fajiao Gongye , 24, 3-6 (1998).

Qunsheng, L., Z. Zeting, Z. Chongli, L. Yancheng, and Z. Qingrong, “Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents, ” Fluid Phase Equilibria , 207, 183-192(2003).

Reid, R. C., J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill Internation EditionSingapore, (1988).

Rizvi, S. S. H., A. L. Benado, J. A. Zollweg, and J. A. Daniels, “Supercritical fluid extraction : fundamental principles and modeling methods, ” Food Technology, 40, 54-65 (1986).

Roy, B. C., M. Goto, and T. Hirose, “Temperature and pressure effects on supercritical CO2 extraction of tomato seed oil,” International Journal of Food Science and Technology, 31, 137-141 (1996).

Sahle-Demessie, E. and T. Richardson, “Cleaning up pesticide contaminated soils: comparing effectiveness of supercritical fluid extraction with solvent extraction and low temperature thermal desorption,” Environmental Technology , 21, 447-456 (2000).

Schmitt, W. J. and R. C. Reid, “The influence of the solvent gas on solubility and selectivity in supercritical extraction,” in: J. M. L. Penninger, M. Radosz, M. A. McHugh, and V. J. Krukonis (Eds.), Supercritical Fluids Technology, Elsevier, Amsterdam, 123-137 (1985).

Schneider, G. M., Angew. Chem. Int. Ed. Engl. 17, 716-727 (1978).

Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., 27, 1197-1203 (1972).

Sovova, H., R. P. Stateva, and A. A. Galushko, “Solubility of β-carotene in supercritical CO2 and the effect of entrainers,” J. Supercritical Fluids, 21, 195-203 (2001).

Sun, Y. P. and H. W. Rollins, “Preparation of polymer-protected semiconductor nanoparticles through the rapid expansion of supercritical fluid solution, ” Chem. Phys. Lett., 288, 585-588 (1998).

Stahl, E., W. Schilz, E. Schiitz, and E. Willing, Angew. Chem. Int. Ed. Engl. 17, 731-738 (1978).

Suzuki, K. and H. Sue, “ Isothermal vapor-liquid equilibrium data for binary systems at high pressure : carbon dioxide-methanol,carbon dioxide-ethanol,carbondioxide-1-propanol,methane-ethanol,methane-1-proanol,ethane-ethanol,and ethane-1-propanol systems,” J. Chem. Eng. Data, 35, 63-66 (1990).

Thakur, R. and R. B. Gupta, “Rapid expansion of supercritical solution with solid cosolvent ( RESS -SC) process: Formation of 2-aminobenzoic acid nanoparticle. ” J.Supercritical Fluids , 37, 307-315 (2006).

Ting, S. S. T., S. J. Macnaughton, D. L. Tomasko, and N. R. Foster, “Solubility of naproxen in supercritical carbon dioxide with and without cosolvents, ” Ind. Eng. Chem. Res., 32, 1471-1481 (1993).

Trappeniers , N. J. and S. H. Hagen, “ESR of copper complexes in NH4Cl, ND4Cl and CsCl, ” Physica, 47, 165-181 (1970).

Walsh, J. M. and M. D. Donohue, “Hydrogen bonding in entrainer cosolvent mixtures: a parametric analysis, ” Fluid Phase Equilibria, 52, 397-404 (1989).

Wang, Q. and K. C. Chao, “Vapor-liquid and Liquid-liquid equilibria and critical states of water+n-decane mixtures,” Fluid Phase Equilibria, 59, 207-215 (1990).

Wells, P. A., R. P. Chaplin, and N. R. Foster, “Solubilities of phenyacetic acid and vanillan in supercritical carbon dioxide,” J. Supercritical Fluids, 3, 8-14 (1990).

Yau, J. S. and F. N. Tasi, “Solubilities of 1-hexadecanol and 1-octadecanol in subcritical and supercritical carbon dioxide,” J. Chem. Eng. Data, 37, 285-287 (1992).

Yu, Z. R., Singh B., and Rizvi, S. S. H., “Solubilities of fatty acids, fatty acid esters, triglycerides, and fats and oils in supercritical carbon dioxide,” J. Supercritical Fluids, 7, 51-59 (1994).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top