跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉月嬌
研究生(外文):Yueh-Chiao Yeh
論文名稱:Esx1基因在小鼠睪丸及胎盤中之特定表現以及在睪丸生殖細胞中啟動子之區域分析
論文名稱(外文):Differential expression of extraembryonic tissue-spermatogenesis-homeobox gene 1 (Esx1) in mouse testes and in placentae and its promoter analysis in testicular germ cells
指導教授:羅能文鄭 葳
指導教授(外文):Neng-Wen LoVie Cheng
學位類別:博士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:123
中文關鍵詞:胚外組織-生精作用-同源箱基因1小鼠睪丸隱睪專一性同源箱異構型組織學顯微鏡胎盤熱緊迫啟動子
外文關鍵詞:Esx1mousetestiscryptorchidismafterplacentaheat stresspromoter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
Part I. ESX1的階段性表現-作為一X精子的候選標識蛋白
中文摘要
胚外組織-生精作用-同源箱基因1(Esx1基因)會轉譯出一具有X-性聯鎖的同源箱蛋白質。過去對於Esx1基因之表現形態,除了其mRNA在睪丸中的表現已被研究外,對於Esx1蛋白質(ESX1)在睪丸中的分佈型式仍然未知。在本論文中,以過去本實驗室所製作的ESX1抗血清探究ESX1在小鼠中的階段性及組織專一性表現。西方點墨分析及免疫螢光分析結果顯示ESX1的分佈與RNA的表現形式一致,主要是在胎盤及睪丸組織中。免疫螢光分析顯示ESX1在三週齡後的小鼠睪丸中表現,而此時生精細管開始出現圓形精細胞。此外,在圓形精細胞形成精子的過程中,在生精細管的管腔部位中ESX1的表現增強。相反的,在隱睪手術處理後的睪丸中,ESX1的表現量會下降。由此結果得知,ESX1之表現主要是在生精作用中減數分裂後的階段。為了更進一步了解ESX1是否在X-精子中表現,本研究利用ESX1抗血清進行免疫螢光顯微鏡分析試驗,分析ESX1在小鼠精子中的表現,結果發現大約一半的精子能被ESX1抗血清所辨識。從本研究中,我們認為ESX1能做為X-精子之標幟蛋白質。

Part II. 熱緊迫誘導不同表現型的Esx1轉錄子在睪丸及胎盤中的轉換表現以及Esx1基因啟動子在雄性生殖細胞中之區域分析
中文摘要
Esx1是一性聯染色體的同源箱基因,已知其mRNA高度表現於成鼠睪丸(a-型Esx1)以及胎盤中(b-型Esx1)。根據過去文獻以及基因庫序列所分析的結果顯示還有另一個新的mRNA表現型存在(在此命名為x-型Esx1),但是過去對於此新的表現型在睪丸中的表現型態及重要性,並沒有任何相關研究被發表。本研究利用兩個能誘導產生熱緊迫的動物模式系統:分別是執行隱睪手術以及將小鼠暴露在高溫環境下,以探究不同型式的Esx1 mRNA之專一性表現。以異構型特殊性RT-PCR分析結果發現此新的Esx1轉錄子表現在隱睪睪丸中,並且顯示會受到熱緊迫誘導而高度表現。此x-型Esx1在隱睪睪丸中會取代a-型轉錄子的表現,以維持Esx1 mRNA及ESX1蛋白質的穩定表現量。然而在受到嚴重熱緊迫下,x-型Esx1表現量有延遲表現的情形。當小鼠在37oC熱緊迫處理時間延長,Esx1在睪丸中的表現量伴隨著減數分裂後期生殖細胞的受損而下降。另外,探究懷孕母鼠在受到熱緊迫傷害下,Esx1基因在胎盤中的轉錄表現,發現當懷孕母鼠受到37oC處理一小時後,胎盤中的主要表現型b-型會轉變為a-型Esx1轉錄子。組織學研究也發現受到熱緊迫傷害的胎盤組織損傷主要發生在迷路層細胞區域,然而免疫螢光分析結果顯示ESX1的表現訊號並沒有因此造成表現量下降。這些結果指出在睪丸及胎盤中,不同Esx1轉錄子的轉換表現,部分發生原因可能是由於不同啟動子的轉換使用。為了探討此論點的可能性,整個Esx1基因之5’-端的序列被選殖出,以探討在不同階段的睪丸生殖細胞中Esx1啟動子是否有不同的調節區域。短暫轉染分析結果顯示Esx1啟動子可能有二個主要的近端作用調節區域存在:一是從核酸序列-965至-438之間的DNA區域以及另一介於核酸序列+25至+227之間的近端作用區域。前者能充份調控報導基因在圓形精細胞和初級精母細胞的表現;後者則能於精原細胞啟動報導基因的表現。這些試驗結果將幫助我們了解Esx1基因啟動子區域在睪丸中可能的作用與功能。
英文摘要 I.
Extra-embryonic tissue-spermatogenesis-homeobox gene 1 (Esx1) encodes an X-linked homeobox protein. Despite the fact that the temporal and spatial mRNA expression pattern has been studied extensively in the testis, specific localization of the Esx1 protein (ESX1) in the testis remains to be determined. In my study, the ESX1 antiserum was used to investigate the stage- and tissue-specific expression of ESX1 in the mouse. Western blotting and immunofluorescent analyses revealed that general localizations of ESX1 were consistent with its RNA expression patterns; that is, it was restricted mainly to the placenta and testis. Immunofluorescent studies demonstrated that ESX1 existed in the testes after 3 weeks of age, coincident with the appearance of round spermatids in the seminiferous tubules. Moreover, ESX1 expression became more abundant in the luminal regions of the seminiferous tubules as the development of round spermatids progressed into spermatozoa. In contrast, reduced expression of ESX1 was observed in experimentally induced cryptorchid testes. The later expression of ESX1 suggests a role in post-meiotic germ cell development. To further understand ESX1 expression in sperm with respect to X chromosome-bearing sperm, we used ESX1 antiserum to immunostain sperm and examined the sperm by confocal laser microscopy. Approximately half the sperm population was recognized by the ESX1 antiserum. On the basis of results of the present study, we suggest that ESX1 could be recognized as a protein marker for X-sperm.

英文摘要 II.
Esx1, an X-linked homeobox gene, is highly expressed in adult testis (as a-form Esx1) and in placenta (as b-form Esx1). Surveys of literatures and GenBank sequences identified the other novel isoform (herein referred to as x-form Esx1), which has not been histologically defined. In the present study, two heat-induced stress models, experimentally induced cryptorchidism and heat incubation, were carried out to examine the isoform-specific expression of Esx1 mRNA. The novel Esx1 isoform was revealed without precedent in cryptorchid testes and showed highly stress-inducible. Isoform-specific RT-PCR results revealed that x-form Esx1 replaces the a-form transcript, and maintains comparatively stable transcriptional expressions of Esx1 RNA and ESX1 protein in cryptorchid testes. However, under severe heat challenge, expression of the x-form transcript was delayed. Reduced expression of Esx1 in testes of mice under prolonged incubation at 37oC coincided with deteriorating cellular damage in postmeiotic germ cells. In addition, the effects of thermal insult on the transcriptional regulation of the Esx1 gene in the placenta were studied in pregnant mice. The results demonstrated that exposure of pregnant mice to 37 oC for one hour caused the constitutive b-form in placenta to switch to the a-form transcript. Histological examination of heated placenta revealed that damage had occurred in labyrinthine layer; however, immunofluorescent analysis showed that ESX1 signals were not reduced. The results of isoform switching suggest that the existences of different Esx1 transcripts might be partially due to the usage of alternative promoters in testis and in placenta. To investigate this proposition, the entire 5’-flanking sequences of Esx1 gene were used to study the distinct promoter regions that would regulate the Esx1 expression in testicular germ cells. Transient transfection assays revealed that there were two putatively distinct promoter regions: a distal promoter region between nt -965 and -438 and a proximal promoter region between nt +54 and +227, which were sufficient to retain the promoter activities in round spermatids and primary spermatocytes, and in spermatogonia, respectively. These results will help us to understand the possible promoter regions essential for Esx1 altenative gene expression in testes.
目錄 ………………………………………………………………………1
Part I. ESX1的階段性表現-作為X精子的候選標識蛋白
中文摘要…………………………………………………………………6
英文摘要…………………………………………………………………7
前言………………………………………………………………………8
一、 生精作用與精子生成………………………………………8
二、 Esx1基因……………………………………………………9
三、 X-及Y-精子之辨識…………………………………………11
材料及方法………………………………………………………………14
一、 試驗動物(Assay animals)……………………………14
二、 隱睪手術(Induction of cryptorchidism)………15
三、 分離精細胞及附睪尾取精(The separation of testicular germ cell populations and collection of spermatozoa from the cauda epididymis)……………………………………………………15
四、 西方點墨分析法(Western blotting analysis)………………17
五、 免疫螢光顯微鏡分析法 (Immunofluorescent microscopy)…18
六、 統計分析(Statistical analysis)………………………………19
結果………………………………………………………………………20
一、 ESX1在小鼠胎盤及睪丸組織的空間表現(Spatial expressions of ESX1 in mouse placenta and testis)…………………………20
二、 ESX1在睪丸發育過程中的階段性表現區域(Stage-specific locations of ESX1 during testicular development)……………21
三、 SRY在睪丸中的專一性分佈位置(Specific localizations of SRY in testis)……………………………………………………22
四、 ESX1及SRY在小鼠精子之不同分佈表現(Differential localizations of ESX1 and SRY in mouse sperm populations)………………………22
五、 利用ESX1及SRY抗血清辨識以向上游動技術所分離之X-及Y-精子(Use of both ESX1 and SRY antisera to recognize the X- and Y- sperm separated by swim-up technique)……………………………23
討論………………………………………………………………………25
參考文獻…………………………………………………………………30

Part II. 熱緊迫誘導不同表現型的Esx1轉錄子在睪丸及胎盤中的轉換表現以及Esx1基因啟動子在雄性生殖細胞中之區域分析
中文摘要………………………………………………………………38
文摘要…………………………………………………………………41
前言……………………………………………………………………42
一、 熱緊迫對生精作用的影響………………………………42
二、 Esx1基因之文獻探討及基因序列分析…………………44
三、 熱緊迫對Esx1轉錄子表現在睪丸及胎盤組織的作用…45
材料及方法……………………………………………………………50
一、 試驗動物(Assay animals)…………………………50
二、 隱睪手術(Induction of cryptorchidism)……50
三、 誘發熱緊迫試驗模式(Experimentally-induced heat stress)…51
四、 反轉錄-PCR及定量rt-PCR(Reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real time (rt)-PCR analyses)………………………………………………………51
五、 西方點墨分析(Western blotting analysis)…………………54
六、 組織切片分析及免疫螢光顯微鏡分析法(Histology and immunofluorescent microscopy)………………………………54
七、 TUNEL試驗(Terminal deoxyribonucleotidyl transferase (TdT)-mediated deoxyl-UTP nick-labeling (TUNEL) analysis).55
八、 小鼠Esx1基因體DNA之選殖(Isolation of the mouse Esx1 genomic DNA)…………………………………………………55
九、 質體建構與製備(Plasmid constructions and preparations)…59
十、 精細胞分離及附睪尾取精(The separation of testicular germ cell populations and collection of spermatozoa from the cauda epididymis)……………………………………………………60
十一、 短暫轉染分析作用與冷光素酶分析(Transient transfection and luciferase assays)…………………………………………60
十二、 統計分析(Statistical analysis)……………………………62
結果………………………………………………………………………63
一、 x-型Esx1轉錄子在隱睪手術後之睪丸中被誘導表現(Induced expression of x-form Esx1 transcript in testis with cryptorchidism)…………………………………………………63
二、 Esx1 mRNA在受到急性熱緊迫下的睪丸中異常的表現(Aberrant expression of Esx1 mRNA in testes under acute heat stress)…………………………………………………………65
三、 ESX1在受到嚴重熱損害的睪丸中之分佈表現(Spatial expression of ESX1 in severely heat-injured testes)……………66
四、 受到嚴重熱緊迫的睪丸生殖細胞發生計畫性細胞凋亡(Programmed cell death in the germ cell population of the testis suffered severe stress)………………………………………66
五、 Esx1轉錄子之特定表現型在胎盤中的獨特性表現(Isoform-specific expressions of Esx1 transcripts in placentae).67
六、 觀察受熱緊迫處理的小鼠胎盤組織形態及ESX1的表現(Morphological observations of cross sections and expression of ESX1 in heat-stressed placenta)………………………………69
七、 獲取及定序小鼠Esx1基因之5’-端調節區域及5’-端非轉譯區序列(Obtaining and sequencing of the 5’-regulatory region and the 5’-untranslated region of mouse Esx1 gene)……………………69
八、 Esx1基因啟動子在分離後的睪丸生殖細胞中之活性(Esx1 promoter activities in fractionated testicular germ cell populations)…………………………………………………70
討論………………………………………………………………………74
參考文獻…………………………………………………………………83
表目錄……………………………………………………………………91
表說明……………………………………………………………………92
圖目錄……………………………………………………………………94
圖說明……………………………………………………………………96
附件目錄………………………………………………………………116
附件說明………………………………………………………………117
個人資料………………………………………………………………122
論文發表………………………………………………………………123
參考文獻 I.

黃信忠。2001。Esx1蛋白質在小屬雄性生殖細胞內的表現。私立東海大學畜產系研究所碩士論文。

Ali, J. I., Eldridge, F. E., Koo, G. C., and Schambacher, B. D. (1990). Enrichment of bovine X-and Y-chromosome-bearing sperm with monoclonal H-Y antibody-fluorescence-activated cell sorter. Arch. Androl. 24, 235-245.

Andersen, C.Y., and Byskov, A. G. (1997). Enhanced separation of X and Y bearing sperm cells by a combined density gradient centrifugation evaluated by fluorescence in situ hybridization of theY-chromosome. Acta. Obstet. Gynecol. Scand. 76, 131-134.

Barqawi, A., Trummer, H., and Meacham, R. (2004). Effect of prolonged cryptorchidism on germ cell apoptosis and testicular sperm count. Asian J. Androl. 6, 47-51.

Bellvé, A. R., Cavicchia, J. C., Millette, C. F., O’Brien, D. A., Bhatnagar, Y. M., and Dym, M. (1977). Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization. J. Cell Biol. 74, 68-85.

Blecher, S. R., Howie, R., Li, S., Detmar, J., and Blahut, L. M. (1999). A new approach to immunological sexing of sperm. Theriogenology 52, 1309-1321.

Branford, W. W., Zhao, G. Q., Valerius, M. T., Weinstein, M., Birkenmeier, E. H., Rowe, L. B., and Potter, S. S. (1997). Spx1, a novel X-linked homeobox gene expressed during spermatogenesis. Mech. Dev. 65, 87-98.

Capel, B., Swain, A., Nicolis, S., Hacker, A., Walter, M., Koopman, P., Goodfellow, P., and Lovell-Badge, R. (1993). Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019-1030.

Chomczynski, P. (1992). One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem. 201, 134-139.

Cohen, D. R., Sinclair, A. H., and McGovern, J. D. (1994). SRY protein enhances transcription of Fos-related antigen 1 promoter constructs. Proc. Natl. Acad. Sci. USA 91, 4372-4376.

Danno, S., Itoh, K., Matsuda, T., and Fujita, J. (2000). Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. Am. J. Pathol. 156, 1685-1692.

Dolci, S., Geremia, R., Albanesi, C., and Rossi, P. (1994). Expression of the Xist gene in urogenital ridges of midgestation male embryos. Biochem. Biophys. Res. Commun. 205, 334-340.

Dym, M. (1997). The male reproduction system. In ‘Histology’. 4th edn. (Eds L. Weiss and R. O. Greep.) pp. 979-1038. (McGraw Hill: New York, USA.)

Dym, M., and Fawcett, D. W. (1971). Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol. Reprod. 4, 195-215.

Eddy, E. M. (2002). Male germ cell gene expression. Recent Prog. Horm. Res. 57, 103-128.

Epstein, C. J., Smith, S., and Travis, B. (1980). Expression of H-Y antigen on preimplantation mouse embryos. Tissue Antigens 15, 63-67.

Fohn, L. E., and Behringer, R. R. (2001). ESX1L, a novel X chromosome-linked human homeobox gene expressed in the placenta and testis. Genomics 74, 105-108.

Gardon, J. C., Aguera, S., and Castejon, F. (2004). Sexing in vitro produced bovine embryos, at different stages of development, using rat H-Y antiserum. Theriogenology 62, 35-43.

Gehring, W. J., Affolter, M., and Bürglin. (1994). Homeodomain proteins. Annu. Rev. Biochem. 63, 487-526.

Gehring, W. J., Müller, M., Affolter, A., Percival, S. A., Billeter, M., Qlan, Y. Q., Otting, G., and Wüthrich, K. (1990). The structure of the homeodomain and its functional implications. Trends. Genet. 6, 323-329.

Grabske, R. J., Lake, S., Gledhill, B. L., and Meistrich, M. L. (1975). Centrifugal elutriation: separation of spermatogenic cells on the basis of the sedimentation velocity. J. Cell. Physiol. 86, 177-189.

Hacker, A., Capel, B., Goodfellow, P., and Lovell-Badge, R. (1995). Expression of Sry, the mouse sex determining gene. Development 121, 1603-1614.

Han, T. L., Ford, J. H., Webb, G. C., Flaherty, S. P., Correll, A., and Matthews, C. D. (1993). Simultaneous detection of X-and Y-bearing human sperm by double fluorescence in situ hybridization. Mol. Reprod. Dev. 34, 308-313.

Hendriksen, P. J. (1999). Do X and Y sperm differ in proteins? Theriogenology 52, 1295–1307.

Hendriksen, P. J., Hoogerbrugge, J. W., Themmen, A. P., Koken, M. H., Hoeijmakers, J. H., Oostra, B. A., van der Lende, T., and Grootegoed, J.A. (1995). Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse. Dev. Biol. 170, 730-733.

Howes, E. A., Miller, N. G., Dolby, C., Hutchings, A., Butcher, G. W., and Jones, R. (1997). A search for sex-specific antigens on bovine spermatozoa using immunological and biochemical techniques to compare the protein profiles of X and Y chromosome-bearing sperm populations separated by fluorescence-activated cell sorting. J. Reprod. Fertil. 110, 195-204.

Izadyar, F., Spierenberg, G. T., Greemers, L. B., den Quden, K., and de Rooij, D. G. (2002). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124, 85-94.

Jafar, S. I., and Flint, A. P. F. (1996). Sex selection in mammals. Theriogenology 46, 191-200.

Johnson, L. A. (2000). Sexing mammalian sperm for production of offspring: the state-of-the-art. Anim. Reprod. Sci. 60-61, 93-107.

Johnson, L. A., and Welch, G. R. (1999a). The Beltsville sperm sexing technology: high-speed sperm sorting gives improved sperm output for in vitro fertilization and AI. J. Anim. Sci. 77(Suppl. 2), 213-220.

Johnson, L. A., and Welch, G. R. (1999b). Sex preselection: high-speed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology 52, 1323-1341.

Johnson, L. A., Flook, J. P., and Hawk, H. W. (1989). Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol. Reprod. 41, 199-203.

Kawarasaki, T., Welch, G. R., Long, C. R., Yoshida, M., and Johnson, L. A. (1998). Verification of flow cytometrically-sorted X-and Y-bearing porcine spermatozoa and reanalysis of spermatozoa for DNA content using the fluorescence in situ hybridization (FISH) techniques. Theriogenology 50, 625-635.

Kim, N. H., Jun, S. H., Do, J. T., Uhm, S. J., Lee, H. T., and Chung, K. S. (1999). Intracytoplasmic injection of porcine, bovine, mouse, or human spermatozoon into porcine oocyte. Mol. Reprod. Dev. 53, 84-91.

Koopman, P., Munterberg, A., Capel, B., Vivian, N., and Lovell-Badge, R. (1990). Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348, 450–452.

Krco, C. J., and Goldberg, E. H. (1976). H-Y (male) antigen: detection on eight-cell mouse embryos. Science 193, 1134-1135.

Li,Y., and Behringer, R. R. (1998). Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nat. Genet. 20, 309-311.

Li, Y., Lemaire, P., and Behringer, R. R. (1997). Esx1, a novel X chromosome-linked homeobox gene expressed in mouse extraembryonic tissues and male germ cells. Dev. Biol. 188, 85-95.

Marret, C., and Durand, P. (2000). Culture of porcine spermatogonia: effects of purification of the germ cells, extracellular matrix and fetal calf serum on their survival and multiplication. Reprod. Nutr. Dev. 40, 305-319.

Mays-Hoopes, L. L., Bolen, J., Riggs, A. D., and Singer-Sam, J. (1995). Preparation of spermatogonia, spermatocytes, and round spermatids for analysis of gene expression using fluorescence-activated cell sorting. Biol. Reprod. 53, 1003-1011.

McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A., and Gehring, W. J. (1984a). A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308, 428-433.

McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A., Gehring, W., J. (1984b). A homologous protein coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403-408.

Meistrich, M. L., Longtin, J., Brock, W. A., Grimes, S. R., and Jr, Mace, M. L. (1981). Purification of rat spermatogenic cells and preliminary biochemical analysis of these cells. Biol. Reprod. 25, 1065-1077.

Modi, D., Shah, C., Sachdeva, G., Gadkar, S., Bhartiya, D., and Puri, C. (2005). Ontogeny and cellular localization of SRY transcripts in the human testes and its detection in spermatozoa. Reproduction 130, 603-613.

Monesi, V. (1965). Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse. Chromosoma 17, 11-21.

Munne, S. (1994). Flow cytometry separation of X and Y spermatozoa could be detrimental for human embryos. Hum. Reprod. 9, 758.

Nakamuta, N., and Kobayashi, S. (2004). Developmental expression of p63 in the mouse testis. J. Vet. Med. Sci. 66, 681-687.

Odorisio, T., Mahadevaiah, S. K., McCarrey, J. R., and Burgoyne, P. S. (1996). Transcriptional analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1X shows that they are coexpressed in spermatogonia and spermatids but are repressed in pachytene spermatocytes. Dev. Biol. 180, 336-343.

Peterson, R. L., Jacobs, D. F., and Awgulewitsch, A. (1992). Hox-3.6: isolation and characterization of a new murine homeobox gene located in the 5’ region of the Hox-3 cluster. Mech. Dev. 37, 151-166.

Poulat, F., Girard, F., Chevron, M. P., Goze, C., Calas, X., Lamb, N., and Berta, P. (1995). Nuclear localization of the testis determining gene products SRY. J. Cell Biol. 128, 737-748.

Rasoulpour, R. J., Schoenfeld, H. A., Gray, D. A., and Boekelheide, K. (2003). Expression of a K48R mutant ubiquitin protects mouse testis from cryptorchid injury and aging. Am. J. Pathol. 163, 2595-2603.

Reubinoff, B. E., and Schenker, J. G. (1996). New advances in sex preselection. Fertil. Steril. 66, 343-350.

Risopatron, J., Sanchez, R., Sepulveda, N., Pena, P., Villagran, E., and Miska, W. (1996). Migration/sedimentation sperm selection method used in bovine in vitro fertilization: comparison with washing/centrifugation. Theriogenology 46, 65-73.

Rockett, J. C., Mapp, F. L., Garges, J. B., Luft, J. C., Mori, C., and Dix, D. J. (2001). Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol. Reprod. 65, 229-239.

Rossi, P., Dolci, S., Albanesi, C., Grimaldi, P., and Geremia, R. (1993). Direct evidence that the mouse sex-determining gene Sry is expressed in the somatic cells of male fetal gonads in the germ cell line in the adult testis. Mol. Reprod. Dev. 34, 369-373.

Russel, L. D., Ettlin, R. A., Sinha Hikim, A. P., and Clegg, E. D. (1990). Mammalian spermatogenesis. In ‘Histological and Histopathological Evaluation of the Testis’. (Eds L. D. Russel, R. A. Ettlin, A. P. Sinha Hikim and E. D. Clegg.) pp. 1-40. (Cache River Press: Clearwater, FL, USA.)

Sachs, L. (1954). Sex-linkage and the sex chromosomes in man. Ann. Eugen. 18, 255-261.

Salas-Cortes, L., Jaubert, F., Baraux, S., Nessmann, C., Bono, M. R., Fellous, M., McElreavey, K., and Rosemblatt, M. (1999). The human SRY protein is present in fetal and adult sertoli cells and germ cells. Int. J. Dev. Biol. 43, 135-140.

Salas-Cortes, L., Jaubert, F., Bono, M. R., Fellous, M., and Rosemblatt, M. (2001). Expression of the human SRY protein during development in normal male gonadal and sex-reversed tissues. J. Exp. Zool. 290, 607-615.

Sassone-Corsi, P. (2002). Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176-2178.

Scott, M. P., and Weiner, A. J. (1984). Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. USA. 81, 4115-4119.

Seidel, G. E., Jr, and Johnson, L. A. (1999). Sexing mammalian sperm: overview. Theriogenology 52, 1267-1272.

Senoo, M., Hoshino, S., Mochida, N., Matsumura, Y., and Habu, S. (2002). Identification of a novel protein p59scr, which is expressed at specific stages of mouse spermatogenesis. Biochem. Biophys. Res. Commun. 292, 992-998.

Shinohara, T., Avarbock, M. R., and Brinster, B. L. (2000). Functional analysis of spermatogonial stem cells in steel and cryptorchid infertile mouse models. Dev. Biol. 220, 401-411.

Singh, U., Fohn, L. E., Wakayama, T., Ohgane, J., Steinhoff, C., Lipkowitz, B., Schulz, R., Orth, A., Ropers, H.H., Behringer, R.R., Tanaka, S., Shiota, K., Yanagimachi, R., Nuber, U.A., and Fundele, R. (2004). Different molecular mechanisms underlie placental overgrowth phenotypes caused by interspecies hybridization, cloning, and Esx1 mutation. Dev. Dyn. 230, 149-164.

Solari, A. J. (1974). The behavior of the XY pair in mammals. Int. Rev. Cytol. 38, 273-317.

Sun, J. G., Jurisicova, A., and Casper, R. F. (1997). Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol. Reprod. 56, 602-607.

Vidal, F., Moragas, M., Catala, V., Torello, M. J., Sanatlo, J., Calderon, G., Gimenez, C., Barri, P. N., Egozcue, J., and Veiga, A. (1993). Sephadex filtration and human serum albumin gradients do not select spermatozoa by sex chromosome: a fluorescent in-situ hybridization study. Hum. Reprod. 8, 1740-1743.

Wang, H., San Agustin, J. J., Witman, G. B., and Kilpatrick, D. L. (2004). Novel role for a sterol response element binding protein in directing spermatogenic cell-specific gene expression. Mol. Cell. Biol. 24, 10 681-10 688.

Welch, G. R., and Johnson, L. A. (1999). Sex preselection: laboratory validation of the sperm sex ratio of flow sorted X-and Y-sperm by sort reanalysis for DNA. Theriogenology 52, 1343-1352.

Yan, Y. T., Stein, S. M., Ding, J., Shen, M. M., and Abate-Shen, C. (2000). A novel PF/PN motif inhibits nuclear localization and DNA binding activity of the ESX1 homeoprotein. Mol. Cell. Biol. 20, 661-671.

參考文獻 II.

Aguilar-Mahecha, A., Hales, B. F., and Robaire, B. (2001). Expression of stress response genes in germ cells during spermatogenesis. Biol. Reprod. 65, 119-127.

Alexander, G., Hales, J. R., Stevens, D., and Donnelly, J. B. (1987). Effects of acute and prolonged exposure to heat on regional blood flows in pregnant sheep. J. Dev. Physiol. 9, 1-15.

Asami-Miyagishi, R., Iseki, S., Usui, M., Uchida, K., Kubo, H. and Morita, I. (2004). Expression and function of PPARgamma in rat placental development. Biochem. Biophys. Res. Commun. 315, 497-501.

Ayoubi, T. A., and van de Ven, W. J. 1996. Regulation of gene expression by alternative promoters. FASEB J. 10, 453-460.

Boellmann, F., Guettouche, T., Guo, Y., Fenna, M., Mnayer, L. and Voellmy, R. (2004). DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc. Natl. Acad. Sci. U SA. 101, 4100-4105.

Bowles, J., Cooper, L., Berkman, J., and Koopman, P. (1999). Sry requires a CAG repeat domain for male sex determination in Mus Musculus. Nat. Genet. 22, 405-408.

Branford, W. W., Zhao, G. Q., Valerius, M. T., Weinstein, M., Birkenmeier, E. H., Rowe, L. B., and Potter, S. S. (1997). Spx1, a novel X-linked homeobox gene expressed during spermatogenesis. Mech. Dev. 65, 87-98.

Burch, J.B.E., and Davis, D.L. (1994). Alternative promoter usage and splicing options result in the differential expression of mRNAs encoding four isoforms of chicken VBP, a member of the PAR subfamily of bZIP transcription factors. Nuclei Acids Res. 22, 4733-4741.

Danno, S., Itoh, K., Matsuda, T. and Fujita, J. (2000). Decreased expression of mouse Rbm3, a cold-shock protein, in sertoli cells of cryptorchid testis. Am. J. Pathol. 156, 1685-1692.

Depping, R., Hägele, S., Wagner, K. F., Wiesner, R. J., Camenisch, C., Wenger, R. H., and Katschinski, D. M. (2004). A dominant-negative isoform of hypoxia-inducible factor-1a specifically expressed in human testis. Biol. Reprod. 71, 331-339.

Dix, D. J., and Hong, R. L. (1998). Protective mechanism in germ cells: stress proteins in spermatogenesis. Adv. Exp. Med. Biol. 444, 137-143.

Dobson, H., and Smith, R. F. (2000). What is stress, and how does it affect reproduction? Anim. Reprod. Sci. 60-61, 743-752.

Dobson, H., Ghuman, S., Prabhakar, S. and Smith, R. (2003). A conceptual model of the influence of stress on female reproduction. Reproduction 125, 151-163.

Dobson, H., Tebble, J. E., Smith, R. F. and Ward, W. R. (2001). Is stress really all that important? Theriogenology 55, 65-73.

Eddy, E. M. (2002). Male germ cell gene expression. Recent. Prog. Horm. Res. 57, 103-128.

Ewing, J. F., and Maines, M. D. (1995). Distribution of constitutive (HO-2) and heat-inducible (HO-1) heme exygenase isozymes in rat testis: HO-2 displays stage-specific expression in germ cells. Endocrinol. 136, 2294-2302.

Fant, M., Weisoly, D. L., Cocchia, M., Huber, R., Khan, S., Lunt, T. and Schlessinger, D. (2002). PLAC1, a trophoblast-specific gene, is expressed throughout pregnancy in the human placenta and modulated by keratinocyte growth factor. Mol. Reprod. Dev. 63, 430-436.

Figueiredo, A. L., Salles, M. G., Albano, R. M. and Porto, L. C. (2004). Molecular and morphologic analyses of expression of ESX1L in different stages of human placental development. J. Cell Mol. Med. 8, 545-550.

Guillemot, F., Nagy, A., Auerbach, A., Rossant, J. and Joyner, A. L. (1994). Essential role of Mash-2 in extraembryonic development. Nature 371, 333-336.

Han, Z., Chatterjee, D., Early, J., Pantazis, P., Hendrickson, E. A. and Wyche, J. H. (1996). Isolation and characterization of an apoptosis-resistant variant of human leukemia HL-60 cells that has switched expression from Bcl-2 to Bcl-xL. Cancer Res. 56, 1621-1628.

Harikai, N., Tomogane, K., Miyamoto, M., Shimada, K., Onodera, S. and Tashiro, S. (2003a). Dynamic responses to acute heat stress between 34 oC and 38.5 oC, and characteristics of heat stress response in mice. Biol. Pharm. Bull. 26, 701-708.

Harikai, N., Tomogane, K., Sugawara, T. and Tashiro, S. (2003b). Differences in hyperthalamic Fos expressions between two heat stress conditions in conscious mice. Brain Res. Bull. 61, 617-626.

Hirai, K., Sasaki, H., Yamamoto, H., Tanooka, H., Sakamoto, H., Iwamoto, T., Takahashi, T., Terada, M. and Ochiya, T. (2004). HST-1/FGF-4 protects male germ cells from apoptosis under heat-stress condition. Exp. Cell Res. 297, 77-85.

Ip, Y. C., Lee, W. M., and Hammond, G. L. (2000). The rabbit sex hormone-binding globulin gene: structure organization and characterization of its 5’-flanking region. Encrinology 141, 1356-1365.

Kessler, S. P., Rowe, T. M., Blendy, J. A., Erickson, R. P., and Sen, G. C. (1998). A cyclic AMP response element in the angiotensin-converting enzyme gene and the transcription factor CREM are required for transcription of the mRNA for the testicular isozyme. J. Biol. Chem. 273, 9971-9975.

Ketola, I., Pentikainen, V., Vaskivuo, T., Ilvesmaki, V., Herva, R., Dunkel, L., Tapanainen, J. S., Toppari, J., and Heikinheimo, M. (2000). Expression of transcription factor GATA-4 during human testicular development and disease. J. Clin. Endocrinol. Metab. 85, 3925-3931.

Kilpatrick, D. L., Zinn, S. A., Fitzgerald, M., Higuchi, H., Sabol, S. L., and Meyerhardt, J. (1990). Transcription of the rat and mouse proenkephalin genes is initiated at distinct sites in spermatigenic and somatic cells. Mol. Cell Biol. 10: 3717-1726.

Kozak, M. (1988). Leader length and secondary structure modulate mRNA function under conditions of stress. Mol. Cell Biol. 8, 2737-2744.

Kurabayashi, M., Shibasaki, Y., Komuro, I., Tsuchimochi, H and Yazaki, Y. (1990). The myosin gene switching in human cardiac hypertrophy. Jpn. Circ. J. 54, 1192-1202.

Li, Y., and Behringer, R. R. (1998). Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nat. Genet. 20, 309-311.

Li, Y., Lemaire, P. and Behringer, R. R. (1997). Esx1, a novel X chromosome-linked homeobox gene expressed in mouse extraembryonic tissues and male germ cells. Dev. Biol. 188, 85-95.

Lindeboom, F., Gillemans, N., Karis, A., Jaegle, M., Meijer, D., Grosveld, F., and Philipsen, S. (2003). A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids. Res. 31, 5405-5412.

Luo, J., Sladek, R., Bader, J. A., Matthyssen, A., Rossant, J. and Giguere, V. (1997). Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta. Nature 388, 778-782.

Maiorino, M., Scapin, M., Ursini, F., Biasolo, M., Bosello, V., and Flohe, L., (2003). Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants. J. Biol. Chem. 278, 34286-34290.

Maiti, S., Doskow, J., Li, S., Nhim, R. P., Lindsey, J. S. and Wilkinson, M. F. (1996). The Pem homeobox gene. Androgen-dependent and -independent promoters and tissue-specific alternative RNA splicing. J. Biol. Chem. 271, 17536-17546.

Miao, J., Panesar, N. S., Chan, K. T., Lai F. M. M., Xia, N. S., Wang, Y. B., Johnson, P. J., and Chan, Y. H. (2001) Differential expression of a stress-modulating gene, BRE, in the adrenal gland, in adrenal neoplasia, and in abnormal adrenal tissues. J. Histochem. Cytochem. 49, 491-499.

Mieusset, R. and Bujan, L. (1995). Testicular heating and its possible contributions to male infertility: a review. Intl. J. Androl. 18, 169-184.

Morasso, M. I., Grinberg, A., Robinson, G., Sargent, T. D. and Mahon, K. A. (1999). Placental failure in mice lacking the homeobox gene Dlx3. Proc. Natl. Acad. Sci. U S A. 96, 162-167.

Mori, D., Okuro, N., Fujii-Kuriyama, Y., and Sogawa, K. (2003). Gene structure and promoter analysis of the rat BTEB2 gene. Gene 304, 163-170.

Nakai, A., Suzuki, M. and Tanabe, M. (2000). Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19, 1545-1554.

Nepomnaschy, P. A., Welch, K., McConnell, D., Strassmann, B. I. and England, B. G. (2004). Stress and female reproductive function: a study of daily variations in cortisol, gonadotrophins, and gonadal steroids in a rural Mayan population. Am. J. Hum. Biol. 16, 523-532.

Novoa, I., Zhang, Y., Zeng, H., Jungreis, R., Harding, H. P. and Ron, D. (2003). Stress-induced gene expression requires programmed recovery from translational repression. EMBO J. 22, 1180-1187.

Ohlsson, R., Falck, P., Hellstrom, M., Lindahl, P., Bostrom, H., Franklin, G., Ahrlund-Richter, L., Pollard, J., Soriano, P. and Betsholtz, C. (1999). PDGFB regulates the development of the labyrinthine layer of the mouse fetal placenta. Dev. Biol. 212, 124-136.

Ohta, H., Aizawa, S. and Nishimune, Y. (2003). Functional analysis of p53 gene in apoptosis induced by heat stress or loss of stem cell factor signaling in mouse male germ cells. Biol. Reprod. 68. 2249-2254.

Parr, B. A., Cornish, V. A., Cybulsky, M. I. and McMahon, A. P. (2001). Wnt7b regulates placental development in mice. Dev. Biol. 237, 324-332.

Ptushkina, M., Malys, N., and McCarthy, J. E. (2004). eIF4E isoform 2 in Schizosaccharomyces Pombe is a novel stress-response factor. EMBO Rep. 5, 311-316.

Rasoulpour, R. J., Schoenfeld, H. A., Gray, D. A. and Boekelheide, K. D. A. (2003). Expression of a k48R mutant ubiquitin protects mouse testis from cryptorchid injury and aging. Am. J. Pathol. 163, 2595-2603.

Rockett, J. C., Mapp, F. L., Garges, J. B., Luft, J. C., Mori, C. and Dix, D. J. (2001). Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol. Reprod. 65, 229-239.

Saxlund, M. A., Sadler-Riggleman, I., and Skinner, M. K. (2004). Role of basic helix-loop-helix (bHLH) and CREB transcription factors in the regulation of sertoli cell androgen-binding protein expression. Mol. Reprod. Dev. 68, 269-278.

Senoo, M., Hoshino, S., Mochida, N., Matsumura, Y. and Habu, S. (2002). Identification of a novel protein p59scr, which is expressed at specific stages of mouse spermatogenesis. Biochem. Biophys. Res. Commun. 292, 992-998.

Shepherd, C. E., Bowes, S., Parkinson, D., Cambray-Deakin, M. and Pearson, R. C. (2000). Expression of amyloid precursor protein in human astrocytes in vitro: isoform-specific increases following heat shock. Neuroscience 99:317-325.

Singh, U., Fohn, L. E., Wakayama, T., Ohgane, J., Steinhoff, C., Lipkowitz, B., Schulz, R., Orth, A., Ropers, H. H., Behringer, R. R., Tanaka, S., Shiota, K., Yanagimachi, R., Nuber, U. A. and Fundele, R. (2004). Different molecular mechanisms underlie placental overgrowth phenotypes caused by interspecies hybridization, cloning, and Esx1 mutation. Dev. Dyn. 230, 149-164.

Sonna, L. A., Fujita, J., Gaffin, S. L., and Lilly, C. M. (2002). Invited review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 92, 1725-1742.

Stelzer, G., Don, J. (2002). Atce1: a novel mouse cyclic adenosine 3',5'-monophosphate-responsive element-binding protein-like gene exclusively expressed in postmeiotic spermatids. Endocrinology 143, 1578-1588.

Tomascik-Cheeseman, L. M., Coleman, M. A., Marchetti, F., Nelson, D. O., Kegelmeyer, L. M., Nath, J. and Wyrobek, A. J. (2004). Differential basal expression of genes associated with stress response, damage control, and DNA repair among mouse tissues. Mutat. Res. 561, 1-14.

van der Velden, A. W., and Thomas, A. A. (1999). The role of the 5’ untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell Biol. 31, 87-106.

Vatnick, I., Ignotz, G., McBride, B. W. and Bell, A. W. (1991). Effect of heat stress on ovine placental growth in early pregnancy. J. Dev. Physiol. 16, 163-166.

Wilson, M. E. (2002). Role of placental function in mediating conceptus growth and survival. J. Anim. Sci. 80, E195-E201.

Yan, Y. T., Stein, S. M., Ding, J., Shen, M. M. and Abate-Shen, C. (2000). A novel PF/PN motif inhibits nuclear localization and DNA binding activity of the Esx1 homeoprotein. Mol. Cell Biol. 20, 661-671.

Yeh, Y. C., Yang, V. C., Huang, S. C. and Lo, N. W. (2005). Stage-dependent expression of extraembryonic tissue-spermatogenesis-homeobox gene 1 (ESX1) protein; a candidate marker for X chromosome-bearing sperm. Reprod. Fertil. Dev. 17, 447-455.

Zavolan, M., Kondo, S., Schonbach, C., Adachi, J., Hume, D. A., Hayashizaki, Y., Gaasterland, T.; RIKEN GER Group, GSL Members, HAYASHIZAKI Y and GAASTERLAN. (2003). Impact alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res. 13, 1290-1300.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top