(3.229.120.26) 您好!臺灣時間:2021/04/10 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李文
研究生(外文):Wen Lee
論文名稱:呼吸空氣魚類(珍珠馬甲)離子調節與氣體交換的消長與鰓薄板MR細胞之來源探討
論文名稱(外文):The Trade-Off between Ion-Regulation and Gas Exchange and the Source of Lamellar MR Cells in Air-Breathing Fish, Trichogaster leeri
指導教授:林惠真林惠真引用關係
指導教授(外文):Hui-Chen Lin
學位類別:碩士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:72
中文關鍵詞:呼吸空氣魚類鰓薄板MR細胞
外文關鍵詞:air-breathing fishlamellar MR cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
魚類的鰓具有多種生理功能,如氣體交換、滲透壓調節、酸鹼平衡和含氮廢物的排除,這些功能之間可能有消長的現象。鰓部的上皮細胞主要由平鋪細胞與富含粒線體細胞(MR細胞)組成,平鋪細胞主要功能為進行氣體交換,而MR細胞主要功能為進行離子調節。MR細胞的分佈主要在鰓絲與鰓薄板間區,部分魚種在鰓薄板上亦有MR細胞的分佈。外界環境的改變,會直接影響MR細胞的增生與分化。近來有研究顯示,能直接利用空氣來進行氣體交換的呼吸空氣魚類,似乎都具有鰓薄板MR細胞。因此當同時面臨多種環境壓力時,鰓的各種生理功能之間會如何調整,有待釐清。鰓部上皮細胞的增生被描述為發生在鰓絲上,但當環境離子濃度降低時,MR細胞數量卻在鰓薄板上大量增加,因此新產生的鰓薄板MR細胞的來源並不清楚。本實驗要測試兩個假說,首先,水生型呼吸空氣的魚類在面臨離子調節的壓力下,是否因其具有直接利用空氣進行氣體交換的能力,而能在鰓薄板上產生MR細胞;並且要探討,鰓絲上的MR細胞是否由鰓絲上增生再轉移到鰓薄板。本實驗以呼吸空氣窄鹽性的淡水魚—珍珠馬甲(Trichogaster leeri)作為實驗材料,並以組織切片與免疫組織染色法觀察以及標定鰓部上皮細胞。首先,將魚隻轉移到不同水中溶氧量以及呼吸空氣能力限制與否的處理下,以檢測鰓薄板MR細胞的數目是否有變化。結果顯示,當轉移到去離子水環境使MR細胞數目增加後,在正常溶氧量的處理下,能夠行使呼吸空氣組的鰓薄板MR細胞數目顯著高於不能行使呼吸空氣組。在同樣能行使呼吸空氣的處理下,不同水中溶氧量的各處理組之間無顯著差異,顯示呼吸空氣能力能提高鰓薄板MR細胞的數目。在探討鰓薄板MR細胞來源的實驗,取樣本前1小時注射BrdU,鰓薄板上具有新增生細胞,但此細胞並非MR細胞,表示鰓薄板具有未分化細胞。另外在量化新增生MR細胞的實驗,轉移到去離子水後,鰓薄板上所增加的MR細胞,僅有少部分為新增生細胞。因此,雖然無法完全排除是否有鰓薄板MR細胞從鰓絲增生再轉移到鰓薄板,鰓薄板MR細胞可能是由鰓薄板未成熟的細胞分化而來。
Fish gills perform a variety of physiological functions, including gas exchange, osmoregulation, acid-base balance and excretion of nitrogenous wastes. There may be trade-offs among these functions in gills. Gill epithelia consist of two main types of cells, including the pavement cells and mitochondria-rich cells (MR cells). The function of pavement cell is respiration and that of MR cell is ion regulation. MR cells are found especially in gill filament and the interlamellar region. In some species, MR cells are also observed in the gill lamellae. Change in external milieu can directly affect the proliferation and differentiation of MR cells. A recent study reported the likelihood of having lamellar MRCs (MRCL) in air-breathing fishes which can use air to exchange gas directly. It is interesting to study how the physiological modification in fish gills upon environmental changes. It is known that proliferation is mainly on the filament and the number of MRCL would increase in response to a decrease in the environmental ion concentration. Nevertheless, the source of MRCL is currently unclear. Therefore, there were two hypotheses in my study. First, upon facing the ionic stress those air-breathing fish can have more MRCLs. Second, the MRCLs are proliferated on filament and migrated to lamella. The experiment material was the air-breathing, stenohaline freshwater fish, pearl gourami (Trichogaster leeri). The paraffin method and immunohistological staining were used to examine and identify the epithelial cells. First, T. leeri was transferred into different dissolved oxygen media and restrained from air-breathing behavior to examine the number of MRCLs. My results indicated that the number of MRCL in air-breathing group was significantly higher than non-air-breathing group in normoxia condition. However, the number of MRCL were not significantly different between normoxia and hypoxia groups when both of the groups can perform air breathing behavior. These results supported the hypothesis that the air-breathing ability can increase the number of MRCL. In the experiment of the source of MRCL, there were newly differentiated cells on the lamellae when BrdU was injected at one hour before sampling. The results suggested that there were undifferentiated cells on the lamellae. In the experiment of the quantification of the newly proliferated MR cells, only few newly differentiated MR cells on lamellae was found when the fish were transfered into deionized water. In conclusion, although it cannot be excluded that some of the MRCLs may be proliferated from filaments and migrated to lamellae, current results suggested that MRCLs can be differentiated in situ from the immature cells of lamellae.
中文摘要………………………………………………………………… 1
Abstract………………………………………………………………… 3
前言……………………………………………………………………… 5
一. 呼吸空氣魚類…………………………………………………… 5
二. 魚類鰓部的構造及功能………………………………………… 7
三. MR細胞………………………………………………………… 9
四. 實驗動物選擇的理由…………………………………………… 13
五. 實驗目的與假說……………………………………………… 14
材料與方法…………………………………………………………… 16
一. 實驗動物……………………………………………………… 16
二. 研究方法……………………………………………………… 16
三. 實驗設計與步驟……………………………………………… 22
實驗結果……………………………………………………………… 25
討論…………………………………………………………………… 37
結語…………………………………………………………………… 47
參考文獻……………………………………………………………… 48
表及圖目……………………………………………………………… 53
李宗翰、黃鵬鵬。1997。硬骨魚類鰓表皮MR細胞之研究綜述。生物科學。 40(1), 53-62。

Bader, R. (1937). Bau, entwicklung and funktion des akzessorischen atmungsorgans der labyrinthfische. Z. Wiss. Zool. 149, 323-401. (In German)

Bindon, S., Gilmour, K. M., Fenwick, J. C. and Perry, S. F. (1994). The effects of branchial chloride cell proliferation on respiratory function in the rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 197, 47-63.

Brauner, C. J., Matey, V., Wilson, J. M., Bernier, N. J. and Val, A. L. (2004). Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. J. Exp. Biol. 207, 1433-1438.

Chang, I. C., Lee, T. H., Yang, C. H., Wei, Y. Y., Chou, F. I. and Hwang, P. P. (2001). Morphology and function of gill mitochondria-rich cells in fish acclimated to different environments. Physiol. Biochem. Zool. 74, 111-119.

Chang, I. C., Wei, Y. Y., Chou, F. I. and Hwang, P. P. (2003). Stimulation of Cl- uptake and morphological changes in gill mitochondria-rich cells in freshwater tilapia (Oreochromis mossambicus). Physiol. Biochem. Zool. 76, 544-552.

Chretien, M. and Pisam, M. (1986). Cell renewal and differentiation in the gill epithelium of fresh- or salt-water-adapted euryhaline fish as revealed by [3H]-thymidine radioautography. Biol. Cell 56, 137-150.

Evans, D. H., Piernarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogenous waste. Physiol. Rev. 85, 97-177.

Fernandes, M. N. and Perna-Martins, S. A. (2001). Epithelial gill cells in the armored catfish, Hypostomus CF. plecostomus (Loricaridae). Rev. Brasil. Biol. 61, 69-78.

Fernanades, M. N. and Perna-Martins, S. A. (2002). Chloride cell responses to long-term exposure to distilled and hard water in the gill of the armored catfish, Hypostomus tietensis (Loricariidae). Acta. Zool. 83, 321-328.

Fernandes, M. N., Perna, S. A. and Moron, S. E. (1998). Chloride cell apical surface changes in gill epithelia of the armoured catfish Hypostomus plecostomus during exposure to distilled water. J. Fish Biol. 52, 844-849.

Graham, J. B. (1997). Air-Breathing Fishes: Evolution, Diversity, and Adaptation. Academic Press, San Diego, CA, USA.

Greco, A. M., Gilmour, K. M., Fenwick, J. C. and Perry, S. F. (1995). The effects of softwater acclimation on respiratory gas transfer in the rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 198, 2557-2567.

Goss, G. G., Laurent, P. and Perry, S. F. (1994). Gill morphology during hypercapnia in brown bullhead (Ictalurus nebulosus): role of chloride cells and pavement cells in aicd-base regulation. J. Fish Biol. 45, 705-718.

Hirai, N., Tagawa, M., Kaneko, T., Seikai, T. and Tanaka, M. (1999). Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicus. Zool. Sci. 16, 43-49.

Ishimatsu, A., Itazawa, Y. and Takeda, T. (1979). On the circulatory systems of the snakeheads Channa maculate and C. argus with reference to bimodal breathing. Jpn. J. Ichthyol. 26, 167-180.

Katoh, F. and Kaneko, T. (2002). Effect of environmental Ca2+ levels on branchial chloride cell morphology in freshwater-adapted killifish, Fundulus heteroclitus. Fisheries Science 68, 347-355.

Laurent, P. and Dunel, S. (1980). Morphology of gill epithelia in fish. Am. J. Physiol. 238, R147-R159.

Laurent, P., Dunel, S., Chevalier, C. and Lignon, J. (1994). Gill epithelial cells kinetics in a freshwater teleost, Oncorhynchus mykiss during adaptation to ion-poor water and hormonal treatments. Fish Physiol. Biochem. 13, 353-370.

Laurent, P. and Hebibi, N. (1989). Gill morphometry and fish osmoregulation. Can. J. Zool. 67, 3055-3063.

Laurent, P. and Perry, S. F. (1990). Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tiss. Res. 259, 429-442.

Lee, T. H., Hwang, P. P. and Feng, S. H. (1996a). Morphological studies of gill and mitochondria-rich cells in the stenohaline cyprinid teleosts, Crprinus carpio and Carassius auratus, adapted to various hypotonic environment. Zool. Stud. 35, 272-278.

Lee, T. H., Hwang, P. P., Feng, S. H. and Huang, F. L. (1996b). The gill structure and branchial mitochondria-rich cells of the medaka, Oryzias latipes. Acta. Zool. Taiwan 7, 43-50.

Lin, H. C. and Sung, W. T. (2003). The distribution of mitochondria-rich cells in the gills of air-breathing fishes. Physiol. Biochem. Zool. 76, 215-228.

Moron, S. E., Oba, E. T., De Andrade, C. A. and Fernandes, M. N. (2003). Chloride cell responses to ion challenge in two tropical freshwater fish, the erythrinids Hoplias malabaricus and Hoplerythrinus unitaeniatus. J. Exp. Zool. 298, 93-104.

Mustafa, S. and Mubarak, K. V. A. (1980). Air breathing of Colisa fasciata (Schneider). Proc. Indian Acad. Sci. (Ani. Sci.) 89, 21-24.

Ojha, J., Dandotia, O. P. and Munshi, J. S. D. (1997). Oxygen consumption of an amphibious fish Colisa fasciatus in relation to body weight. Polskie Arch. Hydrobiol. 24, 547-553.

Perry, S. (1997). The chloride cell: structure and function in the gills of freshwater fishes. Ann. Rev. Physiol. 59, 325-347.

Perry, S. (1998). Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp. Biochem. Physiol. 119A, 9-16.

Perry, S. F. and Laurent, P. (1993). Environmental effects on fish gill structure and function. In “Fish Ecophysiology” (Rankin, J. C. and Jensen, F. B. eds.) pp. 231-263. Chapman and Hall, New York. USA.

Pisam, M., Le Moal, C., Auperin, B., Prunet, P. and Rambourg, A. (1995). Apical structure of “mitochondria-rich” α and β cells in euryhaline fish gill: their behaviour living conditions. Anat. Rec. 241, 13-24.

Randall, D. J. and Perry, S. F. (1992). Catecholamines. In “Fish Physiology” (Randall, D. J., Farrell, A. P. and Perry, S. F. eds) pp. 255-300. Academic Press. New York. USA.

Sakamoto, T., Uchida, K. and Yokota, S. (2001). Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities. Zool. Sci. 18, 1163-1174.

Sakuragui, M. M., Sanches, J. R. and Fernandes, M. N. (2003). Gill chloride cell proliferation and respiratory responses to hypoxia of the neotropical erythrinid fish Hoplias malabaricus. J. Comp. Physiol. 173,309-317.

Sasai, S., Kaneko, T., Hasegawa, S. and Tsukamoto, K. (1998). Morphological alteration in two types of gill chloride cells in japanese eels (Anguilla japonica) during catadromous migration. Can. J. Zool. 76, 1480-1487.

Shikano, T. and Fujio, Y. (1998a). Immunolocalization of Na+, K+-ATPase in branchial epithelium of chum salmon fry during seawater and freshwater acclimation. J. Exp. Biol. 201, 3031-3040.

Shikano, T. and Fujio, Y. (1998b). Immunolocalization of Na+, K+-ATPase and morphological changes in two types of chloride cells in the gill epithelium during seawater and freshwater adaptation in a euryhaline teleost, Poecilia retuculata. J. Exp. Zool. 281, 80-89.

Tsai, J. C. and Hwang, P. P. (1998). The wheat germ agglutinin binding sites and development of the mitochondria-rich cells in gills of tilapia (Oreochromis mossabicus). Fish Physiol. Biochem. 19, 95-102.

Uchida, K. and Kaneko, T. (1996). Enhanced chloride cell turnover in the gills of chum salmon fry in seawater. Zool. Sci. 13, 655-660.

Van der Heijden, A. J. H., Verbost, P. M., Eygensteyn, J., Li, J., Wendelaar Bonga, S. E. and Flik, G. (1997). Mitochondria-rich cells in gills of tilapia (Oreochromis mossambicus) adapted to fresh water or sea water: quantification by confocal laser scanning microscopy. J. Exp. Biol. 200, 55-64.

Wilson, J. M., Kok, T. W. K., Randall, D. J., Vogl, W. A. and Ip, K. Y. (1999). Fine structure of the gill epithelium of the territorial mudskipper, Periophthalmodon schlosser. Cell Tiss. Res. 298, 345-356.

Wilson, J. M. and Laurent, P. (2002). Fish gill morphology: inside out. J. Exp. Zool. 293, 192-213.

Zadunaisky, J. A. (1996). The chloride cell: The active transport of chloride and the paracellular pathways. In “Fish Physiology Vol. XB” (Hoar, W. S. and Randall, D. J. eds.) pp. 129-176. Academic Press, New York. USA.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔