跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯建邦
研究生(外文):Ko Chien-Pang
論文名稱:不同去乙醯度膠態幾丁聚醣乳化性質之比較及其應用於冰淇淋之研究
論文名稱(外文):Comparison of Emulsification Properties of Colloidal Chitosan with Different Deacetylation Degrees and Its Application on Ice Cream
指導教授:阮進惠阮進惠引用關係
指導教授(外文):Rwan Jin-Hwei
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:126
中文關鍵詞:去乙醯度膠態幾丁聚醣乳化性質冰淇淋
外文關鍵詞:Different degree of deacetylationColloidal chitosanEmulsifying properticsIce cream
相關次數:
  • 被引用被引用:17
  • 點閱點閱:1449
  • 評分評分:
  • 下載下載:357
  • 收藏至我的研究室書目清單書目收藏:1
本研究將粗幾丁質製為不同去乙醯度之幾丁聚醣後以12N HCl處理2 hr製備成0~10、30~40、60~70及>85%去乙醯度之膠態幾丁聚醣(colloidal chitosan),以SEM觀察其內部結構及測定其水解度和分子量,並將這些膠態幾丁聚醣分別添加不同濃度(0.5、1.0、1.5、2.0、3.0、4.0及5.0%)及於pH(3.0、4.0、5.0及6.0)下進行乳化比較其乳化能力,及將上述乳化液經不同溫度處理(5℃、25℃、60℃加熱30分鐘、100℃加熱30分鐘及121℃加熱30分鐘)後存放,測定其乳化黏度、安定性、乳化液型態、乳化液滴大小分佈以及多次凍結-解凍循環之安定性。此外,選出具有良好乳化安定性之膠態幾丁聚醣作為乳化劑製備冰淇淋,並與控制組比較黏度、抗融化時間及官能評估。

結果發現,膠態幾丁聚醣產生膨潤及多孔性且相對幾丁聚醣受到酸作用會使去乙醯度提高;膠態幾丁聚醣與相同去乙醯度幾丁聚醣比較,前者水解度較高使其分子量較低。在乳化能力方面,0~10%去乙醯度之膠態幾丁聚醣具有最高的乳化能力,其次為60~70%去乙醯度者,而30~40、及>85%去乙醯度者相似,為乳化能力最低之組別。在黏度方面,60~70%去乙醯度者表現最佳,於pH 5.0~6.0,添加量越高,其乳化液之黏度越好,但處理溫度越高其黏度下降越多。在乳化安定性方面,30~40%去乙醯度者於pH 6.0添加量3.0%乳化時,乳化液於121℃內處理後儲存於14天後仍為安定。60~70%去乙醯度者在pH 5.0和6.0添加量1.0和1.5%乳化亦有相同結果,而於pH 3.0及4.0添加量1.5%時乳化,只能於100℃內處理方能保持乳化液安定14天。>85%去乙醯度者乳化液之安定性不佳,縮短HCl處理1或0.5 hr亦然。乳化液之乳滴大小分佈則隨著添加濃度上升以及pH提高到6.0時,有變小的趨勢,此表示乳化液較為安定。而加熱處理的溫度越高,乳化液滴越容易發生聚集以及變大的現象,此表示乳化液之安定性已經下降,雖然乳化液外表未產生分離。在凍結-解凍循環5次發現,乳化液有稍許油離之現象,隨著凍結-解凍循環次數的增加,乳化液滴有變大之趨勢,且液滴大小越來越不均勻,雖外表無分離現象但顯示其安定性有某程度下降。此外,無論膠態幾丁聚醣去乙醯度之高低,其乳化形態均為W/O/W(water-in-oil-in-water)。

在冰淇淋應用方面,從官能評估的結果可得知,膠態幾丁聚醣組無論在黏度、抗融化能力或官能評估均高於控制組。
Colloidal chitosans of different degree of deacetylation(0~10, 30~40, 60~70, >85%)were prepared by treating chitosan with 12N hydrochloric acid for 2 hours. The colloidal chitosans were determined on the degree of hydrolysis, molecular weight and observed internally by the scanning electronic microscope(SEM). Their emulsifyications were carried on at different concentrations(0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0%)and pHs(3.0, 4.0, 5.0 and 6.0). The emulsifying capacity, thermal stability(5℃, 25℃, 60℃ for 30 min, 100℃ for 30 min and 121℃ for 30min), freeze-thawing stability, viscosity, droplet distribution and emulsion type were determined. Also, colloidal chitosan ice creams and conventional one were compared on the viscosity, anti-melting capacity and sensory evaluation.

As result, the colloidal chitosans showed a swelling and porous structure and higher degree of hydrolysis and lower molecular weight than chitosan that had the same deacetylation degree. On the emulsifying capacity, the 0~10% deacetylated colloidal chitosan had the highest value, the 60~70% one was secondary and both of 30~40% and 60~70% ones give the lowest. Their emulsifying capacity was higher at pH 5.0 and 6.0. On the emulsion viscosity, the 60~70% one showed the best, its viscosity increased at pH 5.0~6.0 and at high concentrations, but down in case of treatment temperature up. On the emulsion stability, the 30~40% emulsion kept stable during 14 days storage even under the heating temperature of 121℃for 30 min when it was emulsified at pH 6.0 and at a concentration of 3.0%. The 60~70% one also gave the same stability when it was emulsified at pH 5.0~6.0 and at concentration of 1.0~1.5%, but it showed less stable when the emulsified solution was carried out at lower pHs. The larger 85% deacetylation one was not stable even if the hydrochloric acid treatment time was decreased to 1 or 0.5 hour in preparing the colloidal chitosan. The colloidal chitosan emulsified at pH 5.0~6.0 and high concentration gave a high droplet distribution in small size, but appeared in large size as their emulsions were treated at high temperature. On the freeze-thawing stability, the emulsion droplets became larger and aggregated as the freeze-thawing cycles increased. The emulsions were water-in-oil-in-water type.

Ice cream prepared from colloidal chitosan as an emulsifier had higher viscosity, anti-melting capacity and total acceptability score than that of conventional one.
總目錄 頁次

壹、中文摘要……………………………………………………………1
貳、英文摘要……………………………………………………………..3
參、前言…………………………………………………………….……5
肆、文獻整理….………………………………………………………….8
一、幾丁質與幾丁聚醣….……………………………………………8
(一)幾丁質(chitin)簡介….………………………………………8
(二)幾丁聚醣(chitosan)簡介….………………………………11
(三)幾丁質與幾丁聚醣的晶型架構與特性…………………….11
1.架構….…………….………………………………….…… 11
2.特性….……………………………………………………...15
(四)幾丁聚醣溶液特性….………………...……………………16
(五)幾丁質與幾丁聚醣的製備….……………………………...17
1.幾丁質的製備….………………………………………...…17
2.幾丁聚醣的製備….………………………………………...20
二、膠態幾丁質與膠態幾丁聚醣….………………..………………24
三、幾丁質與幾丁聚醣之物性分析….……………………………..27
(一)分子量的測定….…………………………………….……27
1. 膠體過濾層析管柱法……………………………………..27
2. 黏度平均分子量法………………………………………..27
3. 高效能液相層析法………………………………………..28
4. 光散射法…………………………………………………..28
(二)去乙醯度測定….……………………………………….…28
1. 紅外線光譜分析法(I.R. spectroscopy)…………………..28
2. 紫外線光譜分析法(Ultraviolet spectroscopy)………..….29
3. 圓二光偏極光譜分析法(Circular Dichroism spectroscopy,C. D.)………………………………………...29
4. 氣相層析法(Gas Chromatography,GC)…………………29
5. 高效能液相層析法(High Performance Liquid Chromatography,HPLC)…………………………………...30
6. 核磁共振光譜分析法(NMR spectroscopy)……………...30
7. 熱分析法(Thermal analysis)……………..........................31
8. 酵素法(Enzymatic hydrolysis)…………………………...31
9. 滴定法(Titration)…………………………………………31
10. 比色分析法(Colorimetric Northrop assay)……………..32
四、幾丁質、幾丁聚醣及其衍生物之應用….………………………32
(一)醫療上的應用….……………………………..…………34
(二)化妝品上的應用….……………………………………..34
(三)食品上的應用….………………………………………..37
1. 抑菌劑…………………………………………………...37
2. 澄清劑…………………………………………………...37
3. 脫酸劑…………………………………………………...38
4. 蔬果保鮮劑……………………………………………...38
5. 泡沫保護劑……………………………………………...39
6. 食品添加劑……………………………………………...39
(四)廢水處理以及純化水的應用….………………………..40
(五)其他….…………………………………………………..43
五、幾丁質與幾丁聚醣之安全評估….……………………………..43
六、乳化….…………………………………………………………..44
(一)乳化的原理….…………………………...…….……..44
(二)乳化劑….……………………………………………..46
(三)HLB(Hydrophile-Lipophile Balance)值….………..46
1. 多元醇的脂肪酸酯…………………………………….47
2. 多元醇的環氧乙烷縮合物…………………………….47
3. 單元醇的環氧乙烷縮合物…………………………….47
(四)乳化的方法與乳化液類型….………………………..50
1. 色素法………………………………………………….51
2. 稀釋法………………………………………………….51
3. 導電度法……………………………………………….51
(五)影響乳化安定性的因素….…………………………....53
七、幾丁聚醣的乳化性質….……………………………………….53
(一)幾丁聚醣乳化相關研究….……………………………53
(二)幾丁聚醣乳化安定作用….………………..…………..55
1. 靜電推斥安定作用…………………………………….56
2. 立體阻礙安定作用…………………………………….56
3. 黏性安定作用………………………………………….56
伍、材料與方法….……………………………………………………...59
一、實驗材料…………………………………………………….…..59
二、實驗儀器….……………………………………………………..59
三、樣品製備….…………………………………………………….60
(一)幾丁聚醣製備….……………………………………..60
(二)膠態幾丁聚醣製備….………………………………..60
四、實驗方法….……………………………………………………..61
(一)膠態幾丁聚醣產品乳化能力之測定…………..……..61
(二)膠態幾丁聚醣產品乳化液黏度及安定性之測定…...61
1. 添加油量對於乳化液黏度影響的測定……………….62
2. 膠態幾丁聚醣去乙醯度和添加濃度、pH及乳化液處理溫度對乳化液安定性影響之測定……………………...62
3. 凍結-解凍循環對乳化液安定性影響之測定……….63
(三)食品上之應用.………………………………………..63
(四)抗解凍測試…………………………………………...65
(五)官能評估……………………………………………...65
(六)分析方法……………………………………………...65
1. 幾丁聚醣及膠態幾丁聚醣之去乙醯度的測定……….65
2. 膠態幾丁聚醣在掃瞄式電子顯微鏡(SEM)下之觀察………………………………………………………...66
3. 幾丁聚醣與膠態幾丁聚醣水解度測定……………….66
4. 幾丁聚醣與膠態幾丁聚醣分子量之測定…………….66
5. 乳化液視黏度的測定………………………………….69
6. 乳化液滴大小分佈之測定…………………………….69
7. 乳化形態的觀察與測定……………………………….69
8. 統計分析……………………………………………….70
陸、結果與討論.…….…………………………..………………………71
一、不同去乙醯度幾丁聚醣之製備.………………………………..71
二、不同去乙醯度膠態幾丁聚醣之製備與性質.…………………..73
(一)膠態幾丁聚醣的處理.……………..…………………73
(二)膠態丁聚醣的性質.…………………………..………73
(三)幾丁聚醣與膠態幾丁聚醣之水解度…………………76
(四)幾丁聚醣與膠態幾丁聚醣之平均分子量……...…..…76
三、膠態幾丁聚醣之乳化能力.………………………………..……78
(一)不同去乙醯度膠態幾丁聚醣對乳化能力的影響.……78
(二)膠態幾丁聚醣之濃度對乳化能力的影響.…………..78
(三)pH值對膠態幾丁聚醣乳化能力的影響….................81
四、膠態幾丁聚醣的乳化安定性.…………………………………..82
(一)油量之選擇.…..………………….……………………82
(二)膠態幾丁聚醣去乙醯度和添加濃度、處理溫度及pH對乳化液之黏度及安定性的影響.……………………..83
1. 0~10%去乙醯度之膠態幾丁聚醣乳化液之安定性….83
2. 30~40%去乙醯度之膠態幾丁聚醣乳化液之黏度及安定性……………………………………………………...86
3. 60~70%去乙醯度之膠態幾丁聚醣乳化液之黏度及安定性……………………………………………………...88
4. 大於85%去乙醯度之膠態幾丁聚醣乳化液之安定性………………………………………………………...91
(三)膠態幾丁聚醣乳化液滴之大小分佈.………………..98
1. 30~40%去乙醯度之膠態幾丁聚醣乳化液滴的大小分佈………………………………………………………...98
2. 60~70%去乙醯度之膠態幾丁聚醣乳化液滴的大小分佈……………………………………………………….100
(四)加熱溫度對膠態幾丁聚醣乳化液滴大小分佈之影響……………………………………………………….102
(五)乳化液類型之觀察………………………………….104
(六)凍結-解凍循環(freeze-thawing cycle)對乳化液安定性之影響…………………………………………….107
五、膠態幾丁聚醣在冰淇淋上之應用…………………………….112
(一)視黏度………………………………………………..112
(二)冰淇淋融化時間測試………………………………..112
(三)官能評估……………………………………………..115
柒、結論.…………………………………………………...………….118
一、膠態幾丁聚醣之特性.……………………………...…............118
二、乳化能力………………………………………………………118
三、乳化安定性.………………………………………………........119
四、乳化液滴的變化.………………………………………………119
五、乳化液乳化之型態……………………………………………120
六、膠態幾丁聚醣於冰淇淋之應用……………………………….120
捌、參考文獻.…………………………………………………...……..121



圖目錄

圖一、幾丁質、幾丁聚醣及纖維素之結構….…………………………...9
圖二、α型幾丁質之立體結構….……………………………………...13
圖三、β型幾丁質之立體結構….…………………………………...…14
圖四、軟體動物外殼有機結構模型的描繪圖….…………………...…18
圖五、幾丁質與幾丁聚醣加工之簡單流程圖….…………………...…25
圖六、從幾丁質中製備幾丁質衍生物….……………………………...33
圖七、乳化劑之形態及其種類…………………………………………47
圖八、兩相乳化液(a)水中油滴型(O/W,上)或是油中水滴型(W/O,下)。多重相乳化液(b)以W/O /W型做說明….…………………..52
圖九、加熱時間對幾丁質去乙醯度之影響.…………………………...72
圖十、以幾丁聚醣製備為膠態幾丁聚醣之去乙醯度變化……………74
圖十一、幾丁聚醣及膠態幾丁聚醣掃描式電子顯微鏡(Scanning Electron Microscopic, SEM)之觀察…………………………...….75
圖十二、膠態幾丁聚醣之去乙醯度(0~10和30~40%)、濃度及pH對乳化能力的影響.……………………………………………….79
圖十三、膠態幾丁聚醣之去乙醯度(60~70和>85%)、濃度及pH對乳化能力的影響.………………………………………………….80
圖十四、導電度突減前所加入不同油量比例對乳化液黏度的影響.……………………………………………………………....84
圖十五、去乙醯度30~40%膠態幾丁聚醣在不同添加濃度及pH值下乳化液滴之大小分佈情形。.…………………………………..99
圖十六、去乙醯度60~70%膠態幾丁聚醣在不同添加濃度及pH值下乳化液滴之大小分佈情形。.………………………………..101
圖十七、加熱處理溫度對60~70%去乙醯度之膠態幾丁聚醣(濃度1.5%,pH 6.0)乳化液滴大小及分佈在不同溫度處理後乳化液滴之變化。.………………………………………………………103
圖十八、膠態幾丁聚醣之乳化液類型觀察…………………………105
圖十九、W/O/W乳化液型態…………………………………………106
圖二十、凍結-解凍循環5次後之膠態幾丁聚醣乳化液外觀….......109
圖二十一、凍結-解凍循環5次後乳化液滴大小分佈圖…………...110



表目錄

表一、甲殼動物、節肢動物、軟體動物、及真菌類之幾丁質含量……10
表二、幾丁質三種晶型結構與特性….………………………………...12
表三、利用鹽酸、乙酸、亞硫酸以及EDTA處理不同種類螃蟹去除礦 物質後分子量與去乙醯度的變化….…………………………...21
表四、不同去乙醯程度幾丁聚醣之製備條件…………………………23
表五、幾丁質與幾丁聚醣之應用….…………………...………………35
表六、幾丁質、幾丁聚醣及其衍生物在食品工業上的應用…………..41
表七、幾丁聚醣與膠態幾丁聚醣之水解度……………………………77
表八、幾丁聚醣與膠態幾丁聚醣之分子量……………………………77
表九、0~10%膠態幾丁聚醣之濃度、處理溫度以及pH對乳化液存放兩個星期間安定性之影響.…………………..………………….85
表十、30~40%膠態幾丁聚醣之濃度、處理溫度以及pH對乳化液黏度之影響…………………………………………………………87
表十一、30~40%膠態幾丁聚醣之濃度、處理溫度以及pH對乳化液存放兩個星期間安定性之影響。.………………………………89
表十二、60~70%膠態幾丁聚醣之濃度、處理溫度以及pH對乳化液黏度之影響………………………………………………………90
表十三、60~70%膠態幾丁聚醣之濃度、處理溫度以及pH對乳化液存放兩個星期間安定性之影響.………………………………...92
表十四、>85%膠態幾丁聚醣(HCl處理2小時)之濃度、處理溫度以及pH對乳化液存放兩個星期間安定性之影響。.………..93
表十五、>85%膠態幾丁聚醣(HCl 處理1小時)之濃度、處理溫度以及pH對乳化液存放兩個星期間安定性之影響。.………95
表十六、>85%膠態幾丁聚醣(HCl 處理0.5小時)之濃度、處理溫度以及pH對乳化液存放兩個星期間安定性之影響。.…..…..96
表十七、膠態幾丁聚醣乳化液在凍結-解凍循環後分離之油量.….108
表十八、控制組冰淇淋與膠態幾丁聚醣冰淇淋黏度之比較………..113
表十九、控制組冰淇淋與膠態幾丁聚醣冰淇淋融化時間之比較…..114
表二十、控制組冰淇淋與不同去乙醯度膠態幾丁聚醣冰淇淋產品之官能評估結果…………………………………………………...116
王綺芬(1989)。蟹殼幾丁質產品理化性質測定及製備方法之研究。國立台灣大學食品科技研究所碩士論文。

王以芬(1994)。幾丁聚醣在楊桃汁澄清加工上的應用。台灣大學食品科技研究所碩士論文。

刈米孝夫 原著,王鳳英 編譯(2003)。界面活性劑的原理與應用。高立圖書有限公司 出版。

朱俊威、張明馥、毛慶豐(2003)。幾丁聚醣溶液的流變性質。第二十六屆高分子研討會論文專輯。

沈家弘(2004)。不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研究。私立東海大學食品科學研究所碩士論文。

阮進惠(1984)。脫色豬血血球蛋白之加熱修飾及其在食品上之應用。東海學報。25: 1013-1027。

阮進惠(1995)。利用不同去乙醯度之幾丁聚醣固定澱粉葡萄糖化。中農化誌 33: 731-746。

阮進惠、林翰良、羅淑珍(1997)。幾丁聚醣水解物之連續式生產及其抑菌作用。中農化誌。35: 596-611。

阮進惠、林芬年(1999)。利用幾丁聚醣進行梅汁脫酸之研究。食品科學26: 295-314。

阮進惠、沈家弘(2006)。不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研究。台灣農業化學與食品科學。44: 41-53。

吳適(1979)。乳化劑在食品工業上的應用。食品工業11(8): 28-32。

吳貞誼(1995)。以幾丁聚醣自葡萄柚汁脫酸、澄清及抗菌之研究。東海大學食品科學研究所碩士論文。

吳玟秀(2003)。不同水解度之幾丁聚醣對老鼠營養質之吸收、肝臟和血清膽固醇和三酸甘油脂之含量及體重之影響。私立東海大學碩士論文。

李勳宜(1988)。草蝦幾丁聚醣之製備及其應用研究。國立台灣大學食品科技研究所碩士論文。

林芬年(1997)。以幾丁聚醣脫酸澄清梅汁之研究。東海大學食品科學研究所碩士論文。

林俊煌(1992)。不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度;膜之物理特性的關係。國立海洋大學水產食品科學研究所碩士論文。

林欣榜 (1999)。幾丁類物質在食品加工上之應用。食品工業 31 (10): 26-37。

洪美珠(1990)。各種幾丁聚醣之製備及其在酵素固定化上之應用。國立台灣大學食品科技研究所碩士論文。

洪啟章(1994)。Bacillus cereus NTU-FC-4 菌株之幾丁質酶及幾丁聚醣酶之研究。國立台灣大學農業化學研究所碩士論文。

梁舜欣(1990)。N-乙醯幾丁寡醣之製備。國立台灣大學農業化學研究所碩士論文。

陳榮輝(2001)。幾丁質、幾丁聚醣的生產製造、檢測與應用。科學發展月刊 29 : 776-787。

張鈺驩(1987)。草蝦頭中幾丁質類產品的製備方法、理化性質與應用。國立台灣大學農業化學研究所碩士論文。

張為憲,李敏雄,呂正義,張永和,陳昭雄,孫璐西,陳怡宏,張基郁,顏國欽,林志城,林慶文(2001)。食品化學。華香園出版社 出版。

趙承琛 編著(1991)。界面基礎科學(原名:界面化學)。復文書局 出版。

蔡義宏(1979)。乳化原理。應用界面化學2: 13-19。

蔡政芳(1992)。不同去乙醯度的幾丁聚醣對微生物的作用及澀味的影響。國立台灣大學食品科技研究所碩士論文。

蔡雅兆(2004)。膠態幾丁聚醣及幾丁聚醣對小白鼠體重、營養素排出及膽固醇和三酸甘油脂含量之比較。私立東海大學食品科學研究所碩士論文。

賴淑琪(1979)。水產廢棄物蝦、蟹外殼之高度利用。食品工業。11: 23-28。

羅淑珍(1996)。幾丁聚醣及其水解物之抑菌作用與其在貢丸、柳橙汁及生乳之應用。東海大學食品科學研究所碩士論文。

Marshall and Arbuckle 原著,王逢興 編譯(1997)。冰淇淋。藝宣圖書出版社 出版。p.291。

Aiba, S., Fujiwara, Y., Hideshima, T., Kakizaki, M., Izume, N., Shoij, T., Tsutsumi, A., Hwang, C., Rha, C. K., and Sinskey, A. J. (1986). Filmogenic properties of chitin/chitosan. In: Chitin in nature and technology. Muzzarelli, R. A. A., Jeuniaux, C., and Gooday, G. M. (Eds), Plenum Press. New York. p.389-396.

Allan, C. R. and Hadiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol., 3: 285-287.

Alonso, I. G., Peniche-Covas, C., and Nieto, J. M. (1983). Determination of the degree of acetylation of chitin and chitosan by thermal analysis. J. Thermal Analysis. 28: 189-193.

Arai, K., Minumari, K., and Fujita, T. (1968). On the toxicity of chitosan. Bull, Tokai. Reg. Fich. Lab. 56: 89-94.

Austin, P. R., Brine, C. J., Castle, J. E., and Zikakis, J. P. (1981). Chitin:New facets of research. Science 212: 749-753.

Blackwell, J. (1988). Physical methods for the determination of chitin structure and conformation. Methods in enzymology. 16:435-442.

Beri, R. G., Walker, J., Reese, E. T. and Rollings, J. E. (1993). Characterization of chitosans via coupled size-exclusion chromatography and multiple-angle laser light-scattering technique. Carbohydrate. 238: 11-26.

Bough, W. A., and Landes, D. R. (1977). Recovery and nutritional evaluation of proteinaceous solids separated from whey by coagulation with chitosan. J. Dairy Sci. 59: 1874-1880.

Bough, W. A., Salter, W. L., Wu, A. C. M., and Perkins, B. E. (1978). Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. II. Coagulation of activated sludge suspensions, Biotechnology and Bioengineering. 20: 1931-1943.

Brack H. P., Tirmizi S. A., and Risen W. M.(1997). A Spectroscopic and Viscometric Study of the Metal-Ion-Induced Gelation of the Biopolymer Chitosan. Polymer, 38, 2351–2362.

Brine C.J. and Austin P.R. (1981). Chitin variability with species and method of preparation. Comp Biochem Physiol. 69: 283-286

Das, K. P., and Kinsella, J. E. (1990). Stability of food emulsions: physicochemical role of protein and nonprotein emulsifiers. Adv Food Nutr Res. 34: 82–201.

Davis, D. H., and Hayes, E. R. (1988). Determination of the degree of acetylation of chitin and chitosan. Method in Enzymology. 161: 442-446.

Defaye, J., Gadelle, A., and Pedersen, C. (1989). Chitin and chitosanoligosaccharides. In Chitin and Chitosan, G. Sajak-Brek, T. Anthonsen,and P. Sandford (Ed.), Elsevier Science Publishers. Ltd, England. p.415-429.

Del Blanco, L. F., Rodriguez, M. S., Schulz, P. C., and Agullo, E. (1999). Influence of the deacetylation degree on chitosan emulsification properties. Colloid polym Sci. 277: 1087-1092.

Domard, A. (1987). Determination of N-acetyl content in chitosan samples by C.D. measurements. Int. J. Biol. Macromol. 9: 333-336.

Domard, A., and Cartier, N. (1989). Glucosamine oligomers: 1. Preparationand characterization. Int. Biol. Macromol. 11: 297-302.

Domszy, J. G. and Roberts, G. A. F. (1985). Evaluation of infrared spectroscopic techniques for analysing chitosan. Macromol. Chem. 186: 1671-1677.

Friberg, S. E., and Larsson, K. (1997). Food emulsions. New York. p.2.

Ghaouth, A. E., Aral, J. A. Ponnampuoam, R. and Boulet, M. (1991). Chitosan coating effect on storability and quality of fresh strawberries. J. Food Sci. 56: 1618-1620.
Gomez Ramírez M., Rojas Avelizapa L.I., Rojas Avelizapa N.G., Cruz Camarillo R. (2004). Colloidal chitin stained with Remazol Brilliant Blue R©, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J Microbiol Methods. 56(2): 213-219.

Hackman, R. H. (1954). Chitin. 1. Enzymatic degradation of chitin and chitin esters. Aust. J. Biol. Sci., 7: 168-178

Hadwiger L.A., Kendra D.F., Fristensky B.W. and Wagoner W.(1985). Chitosan Both Activates Genes in Plants and Inhibits RNA Synthesis in Fungi. In: Muzzarelli R.A.A., Jeuniaux C. and Gooday G.W.. Chitin in Nature and Technology Plenum Press, New York, USA , p. 209-222.

Hasegawa, M., Isogi, A., and Onabe, F. (1993). Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydr. Polym. 20: 279-283.

Hirano, S., Tanaka, Y., Hasegawa, M., Tobetto, K., and Nruaoka, A. (1985). Effect of sulfated derivatives of chitosan on some blood coagulant factors. Carbohydr Res. 137: 205-215.

Hirano, S. (1989). Production and application of chitin and chitosan in Japan. In: Chitin and Chitosan. Skjak-Braek, G., Anthonsen, T., Sandford, P. Eds., Elsevier Applied Science, London, UK. p.37-43.

Hirano, S., Hakura, C., Seino, H., Akiyama, Y., Nonaka, I., Kanbara, N., and Kawakami, T. (1990). Chitosan as an ingredient of domestic animal feed. J. agric. Food Chem. 38: 1214-1217.

Holan, Z., and Voyruba, J. (1980). New method of chitin determination based on deacetylation and gas-liquid chromatographic assay of liberated acetic acid. J. Chromatography. 190: 67-76.

Jiang Y. M. and Li Y. B. (2000). Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chem. 73: 139-143.

Johnson, E. and Peniston, Q. P. (1982). Utilization of shellfish waste for chitin and chitosan production. Chp 19 In: Chemistry and Biochemistry of marine food products. Martin, R. E., Flick, G. J., Hebard, C. E., and Ward, D. R. Eds. p.415.

Jozef Synowiecki and Nadia Ali Al-Khateeb.(2003). Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr. 43(2): 145-171.

Jummaa M., Furkert F. H., Muller B. W. (2002) A new lipid emulsion formulateon with high antimircrobial efficacy using chitosan. Eur J Pharm Biopharm. 53: 115-123.

Kendra, D. F. and Hadwiger, C. A. (1984). Characterization of the smallest chitosan oligomer that in maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum . Experiment Mycology. 8: 276-281.

Knorr D. (1982). Functional properties of chitin and chitosan. J Food Sci 47: 593-595 .

Knorr, D. (1984). Use of chitinous polymers in food-a challenge for food research and development. Food Technol. 38: 85-97.

Launay, B., Doublier, L. L., and Cuverilier, G. (1986). Flow properties of aqueous solution and dispersions of polysaccharides. In: Function properties of food macromolecules. Mitchell, J. R., and Ledward, D. A. Elsevier applied Sci. Publishers. p.12-19.

Li J., Revol J. F., Marchessault R. H..(1996). Effect of degree of deacetylation of chitin on the properties of chitin crystallites. Appl Polym Sci 65: 373-380.

Macrae, R., Robinson, R. K., and Sadler, M. J. (1993). Encyclopaedia of food science food technology and nutrition. Academic press, New York. p.1443,1577.

Maghami G., Roberts A. F. (1988). Evaluation of the viscometric constants for chitosan. Die Makromolekulare Chemie. Volume 189: 195 - 200.

Makoto Hasegawa, Akira Isogai and Fumihiko Onabe.(1993)Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydr polym. Volume 20: 297-283.

Mima, S., Miya, M., Iwamoto, R., and Yoshikawa, S. (1983). Highly deacetylated chitosan and its properties. J. Applied Polymer Sci. 28: 1909-1917.

Moore, G. K., and Roberts, G. A. F. (1980). Determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 2: 115-116.


Murray, S. B., and Neville, A. C. (1998). The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulites from chitin and chitosan. Int. J. Biol. Macromol. 22: 137-144.

Muzzarelli, R. A. A., Barontini, G. and Rocchetti, R (1976). Immobilized enzymes on chitosan columns: Alpha-chymotrypsin and acid phosphatase. Biotechnol. Bioeng. 18: 1445-1454.

Muzzarelli, R. A. A. (1977). In: “Chitin”. Muzzarelli, R. A. A. Eds. Pergamon Press, Oxford. New York, Toronto, Sydney, Paris, Frankfurt. p.5.

Muzzarelli, R. A. A., and Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polymers. 5: 461-472.

Nanjo, F., Katsumi, R., and Sakai, K. (1991). Enzymatic method for determination of the degree of deacetylation of chitosan. Anal. Biochem. 193: 164-167.

Napper, D. H. (1983). Polymeric stabilization of colloidal dispersions. New York:Academic Press. p.87.

No, H. K., and Meyers, S. P. (1989). Crawfish chitosan as a coagulant in recovery of organic compounds from seafood processing streams. J. Agric. Food Chem. 37: 580-583.

Niola, F., Basora, N., Chornet, E., and Vidal, P. F. (1993) A rapid method for the determination of the degree of N-acetylation of chitin- chitosan samples by acid hydrolysis and HPLC. Carbohydr. Res. 238:1-9.

Pantaleone, D., Yalpani, M. and Scollar, M. (1992). Unusual Susceptibility of Chitosan to Enzymic Hydrolysis., Carbohydr. Res., 237: 325-332.

Percot, A., Viton, C., and Domard, A. (2003) Optimization of chitin extraction from shrimp shells. Biomacromol. 4:12-18.

Poole S. (1989). The foam-enhancing properties of basic biopolymers. Int. J. Food Sci. Tech. 24: 121-137.

Poulicek, M., Voss-Foucart, M. F., and Jeuniaux, C. (1986). Chitinoproteic complexes and mineralization in mollusk skeletal structures. In:“Chitin in Nature and Technology”. Muzzarelli, R. A. A., Jeuniaux, C., Gooday, G. W. Eds. Plenum Press, New York and London. p.7-12.

Robyt J. F., Choe J. Y., FOX J. D., Hahn R. S., Fuchs E. B. (1996). Acid modification of starch granules in alcohols:reactions in mixtures of two alcohols combined in different ratios. Carbohydr Res. 283:141-150.

Rodriguez, M. S., Albertengo, L. A., and Agullo, E. (2002). Emulsification capacity of chitosan. Carbohydr. Polym. 48: 271-276.

Rojas-Avelizapa L.I. , Cruz-Camarillo R., Guerrero M.I., Rodríguez-Vázquez R. and J.E. Ibarra.(1999). Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J. Microbiol. Biotechnol. 15: 299-308.

Ruiz-Herrera, J. (1978). The distribution and quantitative importance of chitin in fungi. In: Chitin and chitosan, Proceedings of the First International Conference on Chitin and Chitosan. Muzzarelli, R. A. A. and Pariser, E. R. Eds. MIT Sea Grant Program, Cambridge, Mass. p.11.

Saito, M., Tabeta, R., and Ogawa, K. (1987). High-resolution solid-state 13C NMR study of chitosan and its salts with acid:conformation characterization of polymorph and helical structures as viewed from the conformation-dependent 13C chemical shifts. Macromolecules. 20: 2424-2430.

Sakai, K., Nanjo, F., and Usui, T.(1990). Production and utilization of oligosaccharides from chitin and chitosan. Denpun Kagaku. 37: 79-86.

Sannan, T., Kurita, K., Ogura, K., and Iwakura, Y. (1978). Studies on chitin7:I.R. Spectroscopic determination of degree of deacetylation. Polymer. 19: 458-459.

Schulz, P. C., Rodriguez, M. S., Del Blanco, L. F., Pistonesi, M., and Agullo, E. (1998). Emulsification properties of chitosan. Colloid Polym. Sci. 276: 1159-1165.

Shahidi F., Arachchi J.K.M. and Jeon Y.(1999). Food applications of chitin and chitosans. Trends Food Sci. Technol. 10: 37–51.

Shi, Y. C.; Jiang, Y. M.; Sui, D. X.; Li, Y. L.; Chen, T.; Ma, L.; Ding, Z. T.(1996). Affinity chromatography of trypsin using chitosan as ligand support. J. Chromatography. 742:107-112.

Shimahara, K., Ohkouchi, K., and Ikeda, M. (1982). A new isolation method of crustacean chitin using a proteolytic bacterium Pseudomonas maltophilia. In: Chitin and Chitosan, Proceedings of second international Conference on Chitin and Chitosan. Ed. by Hirano, S. and Tokura, S. Eds. The Japanese Society of Chitin and Chitosan. p.10-14.

Shimahara. K. and Takiguchi, Y. (1988). Preparation of crustacean chitin. In: “Method in Enzymology” Volume 161 Biomass Part B Lignin, Pectin and Chitin. Wood, W. A. and Kellogg, S. T. Eds. Copyright by Academic Press, INC. California. p.417-423.

Soto-Perlata, N. V., Muller, H., and Knorr, D. (1989). Effect of chitosan treatments on the clarity and color of apple juice. J. Food Sci. 54: 495-496.

Stanley, W. L., Watters, G.. G.., Chan, B., and Mercer, J. M. (1975). Lactase and other enzymes bound to chitin with glutaraldehyde. Biotech. Bioeng. 17: 315-326.

Sudharshan N.R., Hoover D.G. and Knorr D.(1992) Antibacterial Action of Chitosan. Food Biotechnol. 6: 257-272.

Suzuki, K., Tokoro, A., Okawa, Y., Suzuki, S., and Suzuki, M.(1985). Enhancing effects of N-acetyl-chito-oligosaccharides on the active oxygen-generating and microbicidal activities of peritoneal exudates cells in mice. Chem Pharm Bull. 33: 886-888.

Synowiecki J. and Al-Khateeb N.A.(2003). Production, properties, and some new applications of chitin and its derivatives. Food Sci. Nutr. 43: 145–171.

Tan, S. C., Khor, E., Tan, T. K., and Wong, S. M. (1998). The degree of deacetylation of chitosan:advocating the first derivative UV-spectrophotometry method of determination. Talanta. 45: 713-719.

Takahashi, Y. (1997). Effect of sonication on the acid degradation of chitin and chitosan. In “Advances in Chitin Science”, Domard A., Robert G. A. F., and Varum K. M. Eds. Vol. 2: 372-377.

Tesch, S., Gerhends, Ch., and Schubert, H. (2002). Stabilization of emulsion by OSA starches. J. Food Eng. 54: 167-174.

Toei, K., and Kohara, T. (1976). A conductometric method for colloid titrations. Analytica Chimica Acta. 83: 59-65.

Tsai, G. J., W. Y. Liau and C. S. Chen. (1997). Antimicrobial activities of shrimp chitosan and chitosan derivatives and their application on food preservation. In: Advances in Chitin Science Vol. II. Domard, A., Roberts, G. A. F., and Varum, K. M. Eds. Jacques Ander Publisher, Lyon, France, p.744-750.

Uchida, Y., Izume, M., and Ohtakara, A.(1988). Preparation of chitosan oligomers with purified chitosanase and its application. In Chitin and Chitosan, Skjak-Brek G., Anthonsen T., and Sandford P. Eds., Elsevier Science Publishers Ltd, England. p.373-382.

Vårum, K. M.; Ottøy and Smidsrød O.(2001) Acid hydrolysis of chitosans. Carbohydr. Polymer. 46: 89-98.

Wu, A. C. M. and Bough, W. A. (1978). A Study of variables in the chitosan manufacturing process in relation to molecular- weight distribution, chemical characteristics and waste- treatment effectiveness. In “Proceedings of the First International Conference on Chitin/Chitosan”. Muzzarelli R. A. A. and Pariser E. R. Eds. MIT Sea Grant Program, Cambridge, Mass. p.88.

Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M. and Zhang, X. F.(2002). Properties and biocompatibility of chitosan films modified by blending with PEG, Biomaterials, 23: 2641-2648.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top