1.石村貞夫、石村園子 (2004),細說Black-Scholes微分方程式,鼎茂圖書,李詩政、吳文峰 譯。
2.黃昭元(2003),台灣、美國、日本、香港、中國大陸股價報酬與波動性外溢效果之研究-多變量BEKK-GARCH模型之應用,東海大學經濟學系研究所碩士論文。3.黃健喬(2004),選擇權定價與行為分析之探討-Black and Schoels模型、隨機波動模型之應用,東海大學經濟學系研究所碩士論文。4.陳浚宏(2003),B-S模式與隨機波動性定價模式之比較-台灣股價指數選擇權之實證,成功大學企業管理研究所碩士論文。
5.陳昶均(2004),不同波動性估計模型下台指選擇權評價績效之比較,東吳大學商學院企業管理學系碩士班碩士論文。6.關旭東(2004),隨機波動度下選擇權評價之實證-以台灣股價指數選擇權為例,輔仁大學金融學系研究所碩士論文。7.Amin, K. and Jarrow, R. (1992), “Pricing Options on Risky Assets in a Stochastic Interest Rate Economy,” Mathematical Finance, Vol. 2, pp. 217-237.
8.Bakshi, G., Cao, C. and Chen, Z. (1997), “Empirical Performance of Alternative Option Pricing Models”, Journal of Finance, Vol.52, pp.2003-2049.
9.Bates, D. (1996), “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutschemark Options,” Review of Financial Studies, Vol.9, pp.69-108.
10.Black, F. and Scholes, M. (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol. 81, pp. 637-659.
11.Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasicity”, Journal of Econometrics, Vol.31, pp.307-327.
12.Boyle, P. P. and Emanuel, D. “Mean Dependent Options.” Working Paper, Accounting Group, University of Waterloo, 1985.
13.Garman, M. B. “A General Theory of Asset Valuation under Diffusion State Processes.” Working Paper No. 50, University of California, Berkeley, 1976.
14.Greene, W. H. (2003), Econometric Analysis, 5th ed., N. J.: Prentice-Hall.
15.Heston, S. L. (1993), “A Closed-Form Solution for Options with Stochastic Volatility with Application to Bond and currency Options,” Review of Financial Studies, Vol.6, pp.327-343.
16.Hull, J. (2003), Options, Futures, and Other Derivatives, 5th ed., N. J.: Prentice-Hall.
17.Hull, J. and White, A. (1987), “The pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, Vol. 42, pp.281-300.
18.Merton, R. C. (1973), “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, vol. 4, No. 1, pp.141-183.
19.Scott, L. O. (1987), “Option Pricing when the Variance Changes randomly: Theory, Estimation and Testing,” Journal of Financial and Quantitative Analysis, Vol. 22, pp.419-438.
20.Scott, L. O. (1997), “Pricing Stock Options in a Jump-diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods,” Mathematical Finance, Vol. 7, pp.345-358.
21.Wiggins, J. B. (1987), “Option Values under Stochastic Volatility: Theory and Empirical Evidence,” Journal of Financial Economics, Vol. 19, pp.351-372.