跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭麗靜
研究生(外文):Li-Ching Kuo
論文名稱:具強韌性之全頻域式數位浮水印技術
論文名稱(外文):A Robust Full-band Image Watermarking Scheme
指導教授:林祝興林祝興引用關係
指導教授(外文):Chu-Hsing Lin
學位類別:碩士
校院名稱:東海大學
系所名稱:資訊工程與科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:55
中文關鍵詞:奇異值分解分散式離散小波轉換資訊隱藏數位浮水印版權保護影像攻擊
外文關鍵詞:Singular Value DecompositionDistributed Discrete Wavelet TransformationInformation hidingDigital watermarkCopyright ProtectionImage attack
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:1
隨著網際網路快速成長,多媒體資料多數採用以數位化的方式儲存及傳輸,不僅相當便利也可節省因人力而傳送的成本。於是在開放網路的世界中,確保數位影像圖片資料之安全與保護合法擁者有權益就成了目前急待解決的問題,故數位多媒體資料的智慧財產權保護問題益形重要。
本篇論文提出一種基於奇異值分解(Singular Value Decomposition)與分散式離散小波轉換(Distributed Discrete Wavelet Transformation)之浮水印技術,此機制先採用分散式離散小波轉換將影像從空間率(Spatial Domain)轉換為頻率域(Frequency Domain),再利用轉換過頻率域資料運用奇異值分解技術求出最後一階HL與LH子頻域之奇異值,再將浮水印資訊藏入奇異值內,隨之,利用分散式離散小波轉換技術方式將浮水印嵌入到最後一階LL與HH子頻域。將最後一階四個子頻域皆嵌入浮水印,故我們方法可稱為全頻域式浮水印技術(Full-band Image Watermarking, FBIW)。
結合分散式離散小波轉換技術利用空間域能分散資訊特性有效抵擋裁切攻擊,而結合奇異值分解技術,可以抵抗縮放、旋轉與其他非幾何性攻擊(例如:高斯雜訊、高斯模糊或銳利化)。由實驗結果得知,全頻域式數位浮水印技術除了嵌入浮水印影像具有不錯品質外,也能對抗幾何性與非幾何性的影像攻擊。
Following the fast development of the Internet, most of multimedia materials are digitally stored and transmitted. Varieties of digital multimedia materials (such as digital sound, image, movies, etc.) spread in a great speed in the Internet; they are easy to be accessed and vulnerable to illegal duplication, therefore, in the opening Internet world, protection of multimedia materials and rights of legal owner from pirates becomes a pending issue. In this thesis, we propose a digital watermarking scheme based on the Singular Value Decomposition (SVD) method and the Distributed Discrete Wavelet Transformation (DDWT) method. Our scheme transforms original image data from the spatial domain into the frequency domain by using DDWT technique, and then obtains singular values of sub-bands from applying SVD technique. Afterward, watermark information is embedded in the four sub-bands in the frequency domain. In this way, we propose the Full-Band Image Watermarking (FBIW) method. We exploit both of the advantages of the DDWT method, which is robust against the cropping attack, and the SVD method, which is robust against geometric attacks such as rotation, rescaling and transposition and non-geometric attacks such as Gaussian noise, sharpening and blurring. Experimental results show that the quality of the stego-image is superior and the embedded watermark has high resistance against a variety of common geometric and non-geometric attacks.
Contents........................................................................ I
List of Figures ................................................................ II
List of Tables ................................................................. III
Chapter 1 Introduction ......................................................... 1
Chapter 2 Preliminaries ........................................................ 3
2.1 Digital watermark .......................................................... 3
2.1.1 The requirement of digital watermark ..................................... 3
2.1.2 Classification by the discrimination of visual............................ 5
2.1.3 Classification by the method of extracting watermark...................... 6
2.2 The spatial domain watermarking technology ................................. 7
2.3 The frequency domain watermarking technology ............................... 9
2.3.1. Discrete cosine transform ............................................... 9
2.3.2. Discrete wavelet transform .............................................. 10
Chapter 3 Lin’s distributed discrete wavelet transformation scheme ............ 13
3.1 Multi-scale DDWT Transformation ............................................ 13
3.2 Embedding watermark process................................................. 15
3.2 Extracting watermark process................................................ 16
Chapter 4 Singular value decomposition ......................................... 17
4.1 Basic theory ............................................................... 17
4.2 The embedding watermark process ............................................ 18
4.3 The extracting watermark process ........................................... 18
Chapter 5 Ganic and Eskicioglu’s DWT-SVD watermarking scheme .................. 20
5.1 The embedding process ...................................................... 20
5.2 The extracting process ..................................................... 21
5.3 Modified DWT-SVD method..................................................... 22
Chapter 6 Proposed schemes ..................................................... 24
6.1 Embedding watermark process ................................................ 24
6.2 Extracting watermark process ............................................... 26
Chapter 7 Experimental results ................................................. 28
7.1 Measurement tools........................................................... 30
7.2 DWT-SVD vs. the modified DWT-SVD............................................ 30
7.2.1 Parameters setting........................................................ 31
7.2.2 Experimental results...................................................... 34
7.2.3 Summary................................................................... 36
7.3 FBIW vs. DDWT vs. DWT-SVD................................................... 37
7.3.1 Parameters setting........................................................ 37
7.3.2 Experimental results...................................................... 39
Chapter 8 Conclusions .......................................................... 48
Chapter 9 Future work .......................................................... 49
Bibliography ................................................................... 50
[1]C. H. Lin, J. S. Jen, and L. C. Kuo, “Distributed Discrete Wavelet Transformation for Copyright Protection,” The 7th International Workshop on Image Analysis for Multimedia Interactive Services, Incheon Korea, April 19-21 2006, pp.53-56.
[2]D.V.S. Chandra, “Digital Iimage Watermarking Using Singular Value Decomposition” The 45th Midwest Symposium on Circuits and Systems (MWSCAS-2002), Vol.3, Aug. 2002, pp.III-264 - III-267.
[3]D. Y. Chen, M. Ouhyoung, and J. L. Wu, “A Shift Resisting Public Watermark System for Protecting Image Processing Software,” IEEE. Transactions on Consumer Electronics, Vol. 46, No. 3, 2000, pp. 404-414.
[4]B. Pfitzmann, “Information Hiding Terminology,” The First Workshop of Information Hiding, Lecture Notes in Computer Science, Cambridge UK, Vol.1174, May30-June1, 1996, pp 347-350.
[5]F.A.P. Petitcolas, R. J. Anderson and M. G. Kuhn, “Information Hiding -A Survey” The IEEE, Vol.87, No.7, July 1999, pp.1062-1078.
[6]O. Dabeer., K. Sullivan, U. Madhow, S. Chandrasekaran, and B.S. Manjunath “Detection of Hiding in the Least Significant Bit,” IEEE Transactions on Signal Processing ,Vol. 52, Issue 10, Part 2, October 2004, pp.3046-3058.
[7]R. Chandramouli. and N. Memon, “Analysis of LSB Based Image Steganography Techniques,” International Conference on Image Processing, Vol. 3, October 7-10, 2001, pp.1019-1022.
[8]M.U. Celik, G. Sharma, A.M. Tekalp, and E. Saber, “Lossless Generalized-LSB Data Embedding,” IEEE Transactions on Image Processing, Vol. 14, Issue 2, February 2005, pp.253-266.
[9]N. Cvejic, and T. Seppanen, “Increasing Robustness of LSB Audio Steganography Using A Novel Embedding Method,” International Conference on Information Technology: Coding and Computing(ITCC 2004), Vol. 2, 2004, pp. 533 - 537.
[10]H. C. Wu, N. I. Wu, C. S. Tsai,and M. S. Hwang, “Image Steganographic Scheme Based on Pixel-value Differencing and LSB Replacement Methods,” IEE Proceedings-Vision, Image and Signal Processing, Vol. 152, Issue 5, Octobers 2005, pp.611 - 615.
[11]E. Koch and J. Zhao, “Toward Robust and Hidden Image Copyright Labeling,” IEEE Workshop Nonlinear Signal and Image Processing, Neos Marmaras, Greece, June 1995, pp. 452–455.
[12]C.T. Hsu and J. L. Wu, “DCT-Based Watermarking for Video,” IEEE Transactions on Consumer Electronics, Vol.44, No.1, February 1998, pp. 206-216.
[13]C.F. Wu, W.S. Hsieh, “Digital Watermarking Using Zero Tree of DCT,” IEEE Transactions on Consumer Electronics, Vol. 46, No. 1, 2000, pp.87-94.(SCI)
[14]R.A. Gopinath and C.S. Burrus, “Efficient Computation of the Wavelet Transforms,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1990), Vol.3, 1990, pp.1599-1601.
[15]I. Daubechies, “The Wavelet Transform: a Method for Time-Frequency Localization,” IEEE Transactions on Information Theory, Vol. 36, September 1990, pp. 961–1005.
[16]M. Vetterli and C. Herley, “Wavelet and Filter Banks: Theory and Design,” IEEE Transactions on Signal Processing, Vol. 40, No.9, September 1992, pp.2207-2229.
[17]Q. Jin, K.M. Wong, and Z. Q. Luo, “Design of an Optimum Wavelet for Cancellation of Long Echoes in Telephone,” IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Philadelphia PA, October 1994, pp.488-491.
[18]S.G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, July 1989, pp. 674-693.
[19]V. V. F. Guzman, M. N. Miyatake,and H. M. H. Meana, “Analysis of a Wavelet-based Watermarking Algorithm,” The 14th International Conference on Electronics, Communications and Computers (CONIELECOMP 2004), 16-18 Feb. 2004, pp.283-287.
[20]S. Wang, D. Zheng, J. Zhao, W. J. Tam, and F. Speranza, “A Digital Watermarking and Perceptual Model Based Video Quality Measurement,” IEEE Instrumentation and Measurement Technology Conference (IMTC 2005), Vol. 3, 16-19 May 2005, pp. 1729-1734.
[21]Y. J. Wu and S. himamoto, “A Study on DWT-Based Digital Audio Watermarking for Mobile Ad Hoc Network,” IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, Vol. 2, 05-07 June 2006, pp. 247-251.
[22]M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image Coding Using Wavelet Transform,” IEEE Transactions on Image Processing, Vol. 1, No. 2, April 1992, pp. 205-220.
[23]M.Craizer, E. A. B. D. Silva, and E. G.Ramos, “Convergent Algorithms for Successive Approximation Vector Quantization with Applications to Wavelet Image Compression,” IEE on Image and Signal Processing, Vol. 146, No.3, June 1999, pp. 159-164.
[24]A. Munteanu, J. Cornelis, G. Van der Auwera and P. Cristea, "Wavelet Image Compression - The Quadtree Coding Approach," IEEE Transactions on Information Technology in Biomedicine, Vol. 3, 1999, pp. 176-185.
[25]J.M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEEE Transactions on Signal Processing, Vol. 41, December 1993, pp. 3445–3463.
[26]R. S. Stankovic and B. J. Falkowski, “The Haar Wavelet Transform: Its Status and Achievements,” Computers and Electrical Engineering, Vol. 29, No. 1, Netherlands, January 2003, pp. 25-44.
[27]H. C. Andrews and C. L. Patterson, “Singular Value Decomposition (SVD) Image Coding,” IEEE Transactions on Communications, April 1976, pp.425-432.
[28]N. Garguir, “Comparative Performance of SVD and Adaptive Cosine Transform in Coding Images,” IEEE Transactions on Communications, August 1979, pp. 1230-1234.
[29]D. P. O. Leary and S. Peleg, “Digital Image Compression by Outer Product Expansion,” IEEE Transactions on Communications, March 1983, pp. 441-444.
[30]C. P. Soo, J. H. Chang, and J. J. Ding, “Quaternion Matrix Singular Value Decomposition and Its Applications for Color Image Processing,” International Conference on Image Processing (CIP 2003), Vol.1, Sept. 14-17, 2003, pp. I-805-I-808.
[31]K. Inoue and K. Urahama, “DSVD: A Tensor-based Image Compression and Recognition Method,” IEEE International Symposium on Circuits and System (ISCAS 2005), Vol. 6, 23-26 May, 2005, pp.6308-6311.
[32]M. Tian, S. W. Luo, and L. Z. Liao, “An Investigation into Using Singular Value Decomposition as A Method of Image Compression,” International Conference on Machine Learning and Cybernetics, Vol. 8, 18-21 Aug., 2005, pp.5200-5204.
[33]R. Liu and T. Tan, “An SVD-based Watermarking Scheme for Protecting Rightful Ownership” IEEE Transactions on Multimedia, Vol.4, Issue 1, March 2002, pp.121-128.
[34]X. Tang, L. Yang, H. Yue, and Z. Yin, “A Watermarking Algorithm Based on the SVD and Hadamard Transform,” International Conference on Communications, Circuits and Systems, Vol. 2, May 27-30, 2005, pp.877.
[35]S. Lee, D. Jang, and C. D. Yoo, “An SVD-Based Watermarking Method for Image Content Authentication with Improved Security,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), Vol.2, March 18-23, 2005, pp.525-528.
[36]L. Ma,C. Li, and S. Song, “Digital Watermarking of Spectral Images Using SVD in PCA-Transform Domain,” IEEE International Symposium on Communications and Information Technology (ISCIT 2005), Vol. 2, Oct. 12-14, 2005, pp. 1489-1492.
[37]H. Ozer and B. Sankur, “An SVD Based Audio Watermarking Technique,” IEEE 13th on Signal Processing and Communications Applications Conference, May 16-18, 2005, pp. 452-455.
[38]K. Konstantinides and G. S. Yovanof, “Improved Compression Performance Using SVD-Based Filters for Still Images,” The Society for Imaging Science and Technology (IS&T)/ the International Society for Optical Engineering (SPIE), Vol. 2418, San Jose, CA, February 7-8, 1995, pp. 100-106.
[39]T. B. Deng and Y. Nakagawa, “SVD-based Design and New Structures for Variable Fractional-delay Digital Filters,” IEEE Transactions on Signal Processing, Vol. 52, Issue 9, Sept. 2004, pp.2513-2527.
[40]S. Redif and T. Cooper, “Paraunitary Filter Bank Design via a Polynomial Singular-Value Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), Vol. 4, 18-23 March, 2005, pp. iv/613 - iv/616.
[41]R. Karkarala and P. O. Ogunbona, “Signal Analysis Using a Multiresolution Form of the Singular Value Decomposition,” IEEE Transactions on Image Processing, Vol. 10, Issue 5, May 2001, pp. 724-735.
[42]T. B. Deng, “Variable Fractional-Delay Filter Design Using Weighted-Least-Squares Singular-Value-Decomposition,” The 7th International Conference on Signal Processing (ICSP 2004), Vol. 1, Aug. 31 –Sept. 4, 2004, pp.54-57.
[43]M. G. Vozalis and K. G. Margaritis, “Applying SVD on Item-Based Filtering,” The 5th International Conference on Intelligent Systems Design and Applications (ISDA 2005), 8-10 Sept., 2005, pp.464-469.
[44]K. Konstantinides, B. Natarajan, G. S. Yovanof, “Noise Estimation and Filtering Using Block-Based Singular Value Decomposition,” IEEE Transactions on Image Processing, Vol.6, Issue 3, March 1997, pp.479 - 483.
[45]E. Ganic and A. M. Eskicioglu, “Robust DWT-SVD Domain Image Watermarking: Embedding Data in All Frequencies,” ACM Multimedia and Security Workshop 2004, Magdeburg Germany, September 20-21, 2004, pp. 166-174.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top