跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江麗芬
研究生(外文):Li-Fen Jiang
論文名稱:以奈米碳管為吸附材料製備固相萃取管之研發
論文名稱(外文):Development of a solid-phase extraction media based oncarbon nanotubes
指導教授:鄧宗禹鄧宗禹引用關係
指導教授(外文):Walter Den
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:奈米碳管玻璃基材化學鍵結法氨化鄰苯二甲酸酯類
外文關鍵詞:Carbon nanotubeSilica carrierChemical bonding methodAmidationPhthalate esters
相關次數:
  • 被引用被引用:2
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究之主旨在於研發將奈米碳管批覆於玻璃載體,用於水樣微量分析之新型固相萃取管。其優點如奈米碳管本身之優異吸附性質外,也需同時具有高度之熱穩定性以便高溫脫附之操作、以及高孔隙度以使水樣順利通過。奈米碳管因受限於其微小的尺寸,若直接填充於空管中,將不利於通水性的要求,因此需將其批覆於載體之表面。
此研究用化學鍵結法進行奈米碳管之批覆,實驗包括玻璃粒體表面之氨化、奈米碳管表面之官能基化及奈米碳管間之相互鍵結等程序最佳化。由FTIR圖譜可看出經酸洗及化學處理後,奈米碳管表面產生羰基。玻璃材質氨化部份,則是藉由接觸角的變化來推測氨化程度,結果顯示經強酸跟強鹼處理後接觸角變小,表示玻璃材質表面產生氫氧官能基,之後經氨化處理後,接觸角變大,顯示玻璃上產生氨基之官能基。奈米碳管複合材料部分則是藉由SEM及EDS來判斷奈米碳管批覆在玻璃材質上的表面型貌變化及成分分析。實驗結果證明奈米碳管會隨著化學鍵結的次數增加而提高鍵結於玻璃材質之批覆率,且由SEM圖可明顯看出多層奈米碳管堆疊情形。
本研究參照相關文獻進行實驗步驟最佳化,由SEM圖可知,玻璃載體經強鹼及強酸前處理進行氨化與浸泡低濃度酸洗處理之多壁奈米碳管溶液中,其批覆率及均勻度最佳。最後,多壁奈米碳管之複合材料進行吸附效能及應用評估,經過再一次之300 ℃熱脫附後,化學鍵結之殘留物可藉由高溫熱脫附而去除且已經達到此系統的背景狀況。多壁奈米碳管之複合材料進行ATD/GC-MS之分析評估,直接注射鄰苯二甲酸酯類之標準品入吸附管經過300 ℃熱脫附後,多壁奈米碳管之複合材料對於內標準品(Benzyl Benzoate)與兩種鄰苯二甲酸酯類(Dibutyl phthalate, Benzyl butyl phthalate)之分析感度較商用吸附劑(Tenax TA)高。
This study is intended to develop a solid-phase extraction tube based on carbon nanotubes embeded on glass particles. For an extraction tube to function properly for aqueous analysis, the tube must not only have the high adsorptivity, but also needs to be thermally stable and sufficiently porous to avoid blockage and leakage. For the latter reason, carbon nanotubes in themselves are not suitable to serve directly as a packing (sorbent) medium.
For the aforementioned reason, this study focuses on developing an embedment procedure to create homogeneously CNT-coating glass particles by the chemical bonding method. The embedment procedures include functionalization of CNT surfaces, amidation of glass surfaces, and chemical bonding between CNTs and glass substrates through condensation. FTIR analysis confirmed that CNT acidification and chemical treatment produced carbonyl groups that were non-existent in raw CNTs. The extent of amidation on glass substrate was demonstrated by the increase in contact angle. The extent of CNT-glass sample was characterized by the visual analyses through electron microscopy (SEM) and Energy Dispersive X-ray. The SEM images showed the increase in the CNT thickness and the fraction of surface coverage after multiple attempts of this procedure, indicating that CNTs can be successfully embedded onto glass carriers.
To increase the overall coverage ratio, the undergoing study involves optimization of CNT embedment procedures and parametric conditions noted from the relevant literature. The best results based on the SEM image were yielded from the pretreatment of carrier surfaces by sequences of base and immersing in the low concentration of acid-washing CNT solution.

Experiments using the CNT embedded samples on the ATD/GC-MS procedure showed that all residuals could be completely removed from the samples after thermal desorption at 300℃ and the analysis sense of CNT embedded samples in the Benzyl Benzoate, Dibutyl phthalate and Benzyl butyl phthalate have higher than commercial absorbent, Tenax TA .
目錄
中文摘要……………………………………………………………………………..Ⅰ
英文摘要……………………………………………………………………………..Ⅱ
目錄…………………………………………………………………………………..Ⅳ
表目錄 Ⅶ
圖目錄…………………………………………………………………………..……Ⅷ

第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
第二章 研究背景與文獻回顧 3
2.1鄰苯二甲酸酯類(Phthalate esters) 3
2.1.1 鄰苯二甲酸酯類特性以及對半導體製程造成的影響 3
2.1.2 微量鄰苯二甲酸酯類的分析方法 6
2.2 前濃縮吸附材之介紹 7
2.3奈米碳管 8
2.3.1奈米碳管的製備 8
2.3.2奈米碳管的材料特性與應用 8
2.3.3 奈米碳管披覆技術 13
2.3.3.1玻璃基材氨化 14
2.3.3.2奈米碳管官能化 14
2.3.3.3化學鍵結法 15




第三章 實驗材料、設備與方法 20
3.1 實驗材料與儀器 20
3.1.1 實驗材料 20
3.1.2 實驗設備 24
3.1.3 分析儀器 26
3.2 實驗流程與內容 27
3.3 實驗與分析方法 29
3.3.1奈米碳管官能化處理 29
3.3.1.1 奈米碳管酸洗處理 29
3.3.1.2 奈米碳管化學處理 29
3.3.2玻璃材質氨化處理 30
3.3.3奈米碳管複合材料合成 30
3.3.4 ATD-GC/MS之分析 30
3.3.5奈米碳管複合材料之飽和吸附效能實驗…………………………......30
第四章 結果與討論 31
4.1奈米碳管官能化處理 31
4.2玻璃材質氨化處理 32
4.3奈米碳管複合材料合成 34
4.3.1 X射線能量散佈分析儀之結果 34
4.3.2化學電子分析之結果 35
4.3.3掃描式電子顯微鏡之結果 37
4.3.3.1改變化學鍵結反應次數 37
4.3.3.2改變玻璃基材的前處理程序 39
4.3.3.3 改變氨化處理參數 49
4.3.3.4改變化學鍵結參數 51
4.3.4 接觸角 57
4.4 奈米碳管複合材料之效能與應用評估 59
4.4.1 奈米碳管複合材料之背景值 59
4.4.2奈米碳管複合材料之分析感度評估 59
4.4.3 奈米碳管複合材料之脫附狀況評估 63
4.4.4 奈米碳管複合材料之吸附效能評估 65
第五章 結論與建議 66
5.1 結論 66
5.2建議 67
參考文獻 68
























表目錄
表2-1 鄰苯二甲酸酯類之物化性質.………………………………………………...5
表2-2 超純水中之有機污染物成份.………………………………………………...6
表2-3 奈米碳管於分析之應用.........……………………………………………….11
表2-4 奈米碳管於有機物處理之應用……………………………………………..12
表2-5自組裝法………………………………………………………………………17
表2-6 選擇成長法…………………………………..………………………………18
表2-6 玻璃基材氨化………………………………..………………………………19
表3-1 商用奈米碳管材料物性……………………..………………………………20
表3-2 藥劑分子結構………………………………..………………………………23
表4-1 蘇打玻璃片跟玻璃珠化學鍵結前後的能量散射光譜儀之結果…………...34
表4-2 化學鍵結之最佳操作條件…………………………………………………...57
表4-3多壁奈米碳管之複合材料之殘留物主要成分………………………………60
表4-4多壁奈米碳管複合材料之殘留物主要成分的結構式………………………61
表4-5 商用奈米碳管與商用吸附劑(Tenax TA)材料物性之比較…………………62










圖目錄
圖2-1 鄰苯二甲酸酯類分子結構……………………………….…...………………4
圖2-2 不同吸附劑種類對積分面積之關係………………………………………..10
圖2-3 奈米碳管化學鍵結於金基材示意圖………………………………………..15
圖2-4化學鍵結示意圖…………………………………………………….………..16
圖3-1利用10-20 nm與40-60 nm的商用奈米碳管來進行超純水的DMP(a)與DEP(b) 之等溫吸附曲線(T=25℃, pH=6.5)。利用GAC吸附超純水中的DEP進行比較…………………………………………………………………………………..21
圖3-2超純水設備流程………………………………………………………………25
圖3-3 研究架構及實驗設計………………………………………………………..28
圖3-4 酸洗加熱震盪實驗設計……………………………………………………..29
圖4-1 10-20 nm奈米碳管之FTIR分析圖譜…………………………………...…….31
圖4-2 玻璃片經過各項前處理過程後接觸角之變化……………………………...33
圖4-3 奈米碳管複合材料的ESCA結果(a) C;(b) N;(c) O;(d) Si………………..36
圖4-4 不同化學鍵結次數的玻璃載體之SEM圖,(a)~(c)為玻璃片;(d)~(f)玻璃珠。(a,d)反應一次;(b,e)反應一次;(c,f)反應五次………………………….38
圖4-5改變玻璃珠前處理參數(改變氫氧化鈉濃度)之SEM圖(a)1 M NaOH(× 50K);(b) 5 M NaOH(× 50K);(c) 9 M NaOH(× 50K);(d)1 M NaOH(× 5K);(e) 5 M NaOH(× 5K);(f) 9 M NaOH(× 5K) …………………………………40
圖4-6改變玻璃珠前處理參數(在超音波震盪下,改變氫氧化鈉濃度)之SEM圖(a)1 M NaOH(× 50K);(b) 5 M NaOH(× 50K);(c) 9 M NaOH(×50K)…..41
圖4-7改變玻璃珠前處理參數(加入鹽酸(0.1 M HCl)進行前處理流程)且進行九次化學鍵結之SEM圖(a)1 M NaOH(× 50K);(b) 5 M NaOH(× 50K);(c) 9 M NaOH(× 50K);(d)1 M NaOH(× 5K);(e) 5 M NaOH(× 5K) ;(e) 5 M NaOH(× 5K)……...........……..…...............................................................................42

圖4-8改變玻璃珠前處理參數(加入鹽酸(0.1 M HCl)進行前處理流程)且進行九次化學鍵結之SEM圖(a)1 M NaOH(× 2K);(b) 5 M NaOH(× 1K)。…………………………………………………………………………….43
圖4-9改變玻璃珠前處理參數(其他玻璃前處理方式)且進行九次化學鍵結之SEM圖(a)15分鐘Cleaning solution(× 50K);(b)15分鐘piranha solution (× 50K);(c)30分鐘Cleaning solution(× 50K);(d)30分鐘piranha solution (× 50K)。…………………………………………………..………………..…….45
圖4-10改變玻璃珠前處理參數(其他玻璃前處理方式) 且進行九次化學鍵結之SEM圖(a)15分鐘Cleaning solution(× 5K);(b)15分鐘piranha solution (× 5K);(c)30分鐘Cleaning solution(× 5K);(d)30分鐘piranha solution (× 1.5K) ……………………….……………………………………………….…46
圖4-11改變玻璃珠前處理參數(其他玻璃前處理方式再以震盪輔之)且進行九次化學鍵結之SEM圖(a)15分鐘Cleaning solution(× 50K);(b)15分鐘piranha solution (× 50K);(c)30分鐘Cleaning solution(× 50K);(d)30分鐘piranha solution (× 50K) ……………………………………………………...….…..47
圖4-12改變玻璃珠前處理參數(其他玻璃前處理方式再以震盪輔之)且進行九次化學鍵結之SEM圖(a)15分鐘Cleaning solution(× 2K);(b)15分鐘piranha solution (× 5K);(c)30分鐘Cleaning solution(× 5K);(d)30分鐘piranha solution (× 1K)…..………………………………………………….………..48
圖4-13改變矽烷化處理參數之蘇打玻璃片之SEM圖(a)浸泡1小時0.1 %APTMS溶液且去除APTMS溶液後靜置20小時(× 1K) ;(b)浸泡5分鐘0.1 %APTMS溶液(× 1K) ;(c)浸泡1小時7.4 %APTMS溶液且去除APTMS溶液後靜置20小時(× 1K);(d) 浸泡5分鐘7.4 %APTMS溶液(× 1K)…...………………………………………………………….……..…….49


圖4-14改變矽烷化處理參數之蘇打玻璃片之SEM圖(a)浸泡1小時0.1 % APTMS溶液且去除APTMS溶液後靜置20小時(× 50K);(b)浸泡5分鐘7.4 % APTMS溶液(× 50K)………………………………………..……………...50
圖4-15 改變玻璃片化學鍵結參數(改變奈米碳管溶液之參數) 且進行九次化學鍵結之SEM圖(a)-(c)2 mg MWCNTs/200 mL DMF;(d)-(f) 4 mg MWCNTs/200 mL DMF……… ..……………………………………………………52
圖4-16改變玻璃片化學鍵結參數(ODA溶液參數) 且進行九次化學鍵結之SEM圖(a) 2 mg MWCNTs/200 mL DMF (× 50K);(b) 4 mg MWCNTs/200 mL DMF (× 50K);(c) 2 mg MWCNTs/200 mL DMF (× 5K);(d)4 mg MWCNTs/200 mL DMF (× 5K)………. ……………………............…….53
圖4-17改變玻璃片化學鍵結參數(奈米碳管官能化參數) 且進行四次化學鍵結之SEM圖(a)強酸酸洗處理;(b)化學處理………………………………...….…54
圖4-18改變玻璃片化學鍵結參數(奈米碳管官能化參數) 且進行九次化學鍵結之SEM圖(a)與(b)強酸酸洗處理;(c)與(d)化學處理。………………......……55
圖4-19改變玻璃珠化學鍵結參數(奈米碳管官能化參數) 且進行九次化學鍵結之SEM圖(a)與(b)強酸酸洗處理;(c)與(d)化學處理………………….………56
圖4-20 多壁奈米碳管批覆在胺矽烷化之康寧玻璃片之反應次數與接觸角結………………..……………………………………………….………...…58
圖4-21 單壁奈米碳管批覆在胺矽烷化之康寧玻璃片之反應次數與接觸角結果……………………………………………………………………….….…58
圖4-22利用具有多壁奈米碳管批覆之蘇打玻璃片(五次化學鍵結)進行ATD-GC-MS第一次之測試結果……………………………………...……………...…….60
圖4-23 利用具有奈米碳管批覆之玻璃片(五次化學鍵結)進行ATD-GC-MS第二次之測試結果………………………………………………..….…………………61


圖4-24 ATD/GC-MS對鄰苯二甲酸酯類之感度測試結果(直接注射進入吸附管)。第一類為氨化後之玻璃珠(100 mg); 第二類為商用吸附劑(Tenax TA)與氨化後之玻璃珠混合(1:99 mg); 第三類為經9次化學鍵結的多壁奈米碳管之複合材料(100 mg)…………………………………………………………….....……62
圖4-25 經過十次熱脫附後,奈米碳管複合材料與玻璃棉(填充至吸附管中防止吸附劑外漏)之SEM圖。(a)與(b)為奈米碳管複合材料;(c)與(d)為玻璃棉。…..………………………………………………………………………….64
圖4-26 氨化後之玻璃珠與奈米碳管複合材料進行批次式吸附實驗之結果………..65
參考文獻
Basheer, C.; Ainedhary, A. A.; Rao, B. S. M.; Valliyaveettil, S. and Lee, H. K., 2006, “Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry,” Analytical Chemistry, 78, 2853-2858.
Burghard, M.; Duesberg, G.; Philipp, G..; Murster, J. and Roth, S., 1998, “Controlled adsorption of carbon nanotubes on chemically modified electrode arrays,” Advanced Materials, 10, 584-588.
Cai, Y. Q.; Jiang, G.. B.; Liu, J. F. and Zhou, Q. X., 2003a, “Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography,” Analytica Chimica Acta, 494, 149-156.
Cai, Y. Q.; Jiang, G.. B.; Liu, J. F. and Zhou, Q. X., 2003b, “Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-Nonylphenol, and 4-tert-Octylphenol,” Analytical Chemistry, 75, 2517-2521.
Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C. and Haddon, R. C., 1998, “Solution properties of single-walled carbon nanotubes,” Science, 282, 95-98.
Chen, Q. and Dai, L., 1999, “Plasma patterning of carbon nanotubes,” Applied Physics Letters, 76, 2719-2721.


Diao, P.; Liu, Z., Wu, B.; Nan, X.; Zhang, J. and Wei, Z., 2002, “Chemically Assembled Single-Wall Carbon Nanotubes and their Electrochemistry,” Chemphyschem, 10, 898-901.
Den, W.; Liu, H. C.; Chan, S. F.; Kin, K. T. and Huang, C. P., 2006, “Adsorption of phthalate esters with multiwalled carbon nanotubes and its applications,” Journal of Environmental Engineering and Management, 16(2), 281-288.
Endo, M.; Takeuchi, K.; Kobori, K.; Takahashi, K.; Kroto, H. W. and Sarkar, A., 1995, “Pyrolytic carbon nanotubes from vapor-grown carbon fibers,” Carbon, 33,873-881.
Engewald, W.; Porschmann, J. and Welsh, T., 1990, “Graphitized thermal carbon-black as a shape selective stationary phase in GC,” Chromatographia, 30, 537-542.
Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M. and Dai, D., 1999, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 283, 512-514.
Fonseca, A.; Hernadi, K.; Piedigrosso, P.; Colomer, J. F.; Mukhopadhyay, K.; Doome, R.; Lazarescu, S.; Biro, L. P.; Lambin, P.; Thiry, P. A.; Bernaerts, D. and Nagy, J. B., 1998, “Synthesis of single- and multi-wall carbon nanotubes over supported catalysts.,” Applied Physics A: Materials Science & Processing, 67, 11-22.
Hahn, C. S., Cho, H. S. and Yang, H. S., 1981, “Conversion of graphite into mellitic acid,” Carbon, 19, 225-229.

Hsin, Y. L.; Lai, J. Y.; Hwang, K. C.; Lo, S. C.; Chen F. R. and Kai J. J., 2006, “Rapid surface functionalization of iron-filled multi-walled carbon nanotubes,” Carbon.(In press)
International Technology Roadmap for Semiconductors (ITRS), 2005, Update. Semiconductor Industry Association.
Iijima, S., 1991, “Helical microtubules of graphitic carbon,” Nature, 354, 56-58.
Jung, D. H.; Jung, M. S.; Ko, Y. K.; Seo, S. J. and Jung, H. T., 2004, “ Carbon nanotube conducting arrays by consecutive amidation reactions,” Chemical Communications, 526-527.
Kiso, Y.; Kon, T.; Kitao, T. and Nishimura, K., 2001, “Rejection properties of alkyl phthalates with nanofiltration membranes,” Journal of Membrane Science, 182, 205-214.
Kumar, A.; Camenzind, M. J. and Chargin Jr, C. J., 2000, “Identifying organic contaminants in ultrapure water at sub-parts-per-billion levels,” Ultrapure Fluids, Sunnyvale, CA: Balazs Analytical Laboratory.
Li, Q. L. and Yuan, D. X., 2003, “Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing,” Journal of Chromatography A, 1003, 203-209.
Li, Q. L.; Yuan, D. X. and Lin, Q. M., 2004, “Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples,” Journal of Chromatography A, 1026, 283-288.


Liu, G.. H., Wang, J. L., Zhu, Y. F. and Zhang, X. R., 2004, “Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes,” Analytical Letters, 37, 3085-3104.
Liu, F. K.; Hsu, Y. T. and Wu, C. H., 2005, “Open tubular capillary electrochromatography using capillaries coated with films of alkanethiol-self-assembled gold nanoparticle layers,” Journal of Chromatography A, 1083, 205–214.
Liu, F. K.; Chang, Y. C.; Koa, F. H.; Chub, T. C. and Daia, B. T., 2003, “Rapid fabrication of high quality self-assembled nanometer gold particles by spin coating method,” Microelectronic Engineering, 67–68, 702–709.
Liu, J.; Casavant, M. J.; Cox, M.; Walters, D. A.; Boul, P.; Lu, W.; Rimberg, A. J.; Smith, K. A.; Colbert, D. T. and Smally, R. E., 1999, “Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates,” Chemical Physics Letters, 303, 125-129.
Long, R. Q. and Yang, R. T., 2001, “Carbon nanotubes as superior sorbent for dioxin removal,” Journal of American Chemical Society, 123, 2058-2059.
Lu, C.; Chung, Y. L. and Chang, K. F. , 2005, “Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, 39, 1183-1189.
Matisova, E. and Skrabakova, S., 1995, “Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples,” Journal of Chromatography A, 707, 145-179.


O’Mahony, T.; Owens, V. P.; Murrihy, J. P.; Guihen, E.; Holmes, J. D. and Glennon, J. D., 2003, “Alkylthiol gold nanoparticles in open-tubular capillary electrochromatography,” Journal of Chromatography A, 1004, 181–193.
Peng, X. J.; Li, Y. H.; Luan, Z. K.; Di, Z. H.; Wang, H. G.; Tian, B. H. and Jia, Z. P., 2003, “Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes,” Chemical Physics Letters, 376, 154-158.
Pierce, C.; Smith, R. N.; Wiley, J. W. and Cordes, H., 1951, “Adsorption of water by carbon,” Journal of the American Chemical Society, 73, 4551-4557.
Ren, Z. F.; Huang, Z. P.; Wang, D. Z.; Wen, J. G..; Xu, J. W.; Wang, J. H.; Calvet, L. E.; Chen, J.; Klemic, J. F. and Reed, M. A., 1999, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Applied Physics Letters, 75, 1086-1088.
Saridara, C.; Brukh, R.; Iqbal, Z. and Mitra, S., 2005, “Preconcentration of volatile organics on self-assembled, carbon nanotubes in a microtrap,” Analytical Chemistry, 77, 1183-1187.
Sharpe, R. M., 2001, “Hormones and testis development and the possible adverse effects of environmental chemicals,” Toxicology Letters, 120, 221–232.
Shimoda, H.; Oh, S. J.; Geng, H. Z.; Walker, R. J.; Zhang, X. B.; McNeil, L. E. and Zhou, O., 2002, “Self-assembly of carbon nanotubes,” Advanced Materials, 14, 899-901.
Staples, C. A.; Peterson, D. R.; Parkerton, T. F. and Adams, W. J., 1997, “The environmental fate of phthalate esters: a literature review,” Chemosphere, 35, 667-749.
Sun, J. and Gao, L., 2003, “Development of a dispersion process for carbon nanotube in ceramic matrix by heterocoagulation,” Carbon, 41, 1063-1068.
Wang, L. and Wang, E., 2004, “A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode,” Electrochemistry Communications, 6, 225–229.
Wang, A.; Wang, A.; Cao, T.; Tang, H.; Liang, X.; Salley, S. O. and Ng, K. Y. S., 2005, “In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces,” Journal of Colloid and Interface Science, 291, 245–255.
Wu, B.; Zhang, J.; Wei, Z.; Cai, S. and Liu, Z., 2001, “Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface,” Journal of Physical Chemistry B, 105, 5075-5078.
劉旭娟,2005,改良式固相萃取技術應用於超純水中鄰苯二甲酸酯類之微量分析,國立交通大學碩士論文。
蘇峰生、盧重興,2006,奈米碳管吸附自來水中有機物質之研究,第三屆環境保護與奈米科技學術研討會。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top